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Abstract

A simple way to define the flow rules of plasticity models is the assumption of generalized normality associated with
a suitable pseudo-potential function. This approach, however, is not usually employed to formulate endochronic theory
and non-linear kinematic (NLK) hardening rules as well as generalized plasticity models. In this paper, generalized nor-
mality is used to give a new formulation of these classes of models. As a result, a suited pseudo-potential is introduced
for endochronic models and a non-standard description of NLK hardening and generalized plasticity models is also
provided. This new formulation allows for an effective investigation of the relationships between these three classes
of plasticity models.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The models proposed so far in the literature to describe the rate independent inelastic behavior of real
materials subjected to monotonic or cyclic loading conditions can be essentially classified into two main
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families: (i) models where the present state depends on the present value of observable variables (total
strain, temperature) and of suitable internal variables; (ii) models, indicated here as hereditary, that require
the knowledge of the whole past history of observable variables.

The first group encompasses, for instance, the classical models of Prandtl–Reuss and Prager (see e.g.
Lemaitre and Chaboche, 1990) and the NLK hardening model of Armstrong and Frederick (1966), in its
original form as well as in the modified versions recently proposed by Chaboche (1991) and Ohno and
Wang (1993) in order to improve the ratchetting modelling. For these models, the well known notions of
elastic domain and loading (or yielding) surface apply. Associativity and non-associativity of the plastic
strain flow rule are also well-established concepts, as well as the assumption of generalized associativity
(or generalized normality), relating all internal variable flow directions to a given loading surface
(Halphen and Nguyen, 1975; Jirásek and Bažant, 2002). Using the language of convex analysis
(Rockafellar, 1969), generalized normality entails that the flows of all internal variables belong to the sub-

differential set of a given scalar non-negative function called pseudo-potential (Moreau, 1970; Frémond,
2002).

Among internal variable theories, generalized plasticity deserves special attention. A first important step
for its formulation was the idea, suggested by Eisenberg and Phillips (1971), of a plasticity model where,
despite classical plasticity, loading and yielding surfaces are not coincident. Then, starting from an axiom-
atic approach to describe inelastic behavior of materials, Lubliner proposed some simple generalized plas-
ticity models, able to represent some observed experimental behavior of metals (Lubliner, 1974, 1980, 1984;
Lubliner et al., 1993). More recently, generalized plasticity has been used for describing the shape memory
alloy behavior (Lubliner and Auricchio, 1996).

Endochronic models (Valanis, 1971) and Bouc-Wen type models (Bouc, 1971; Wen, 1976) are two impor-
tant examples of hereditary models. Endochronic theory has been developed during the seventies and used
for modelling the plastic behavior of metals (see, for instance, Valanis, 1971; Valanis and Wu, 1975) and the
inelastic behavior of concrete and soils (among others, Bažant and Krizek, 1976; Bažant and Bath, 1976).
The endochronic stress evolution rule depends on the so-called intrinsic time and is formulated by a con-
volution integral between the strain tensor and a scalar function of the intrinsic time called memory kernel.
When the kernel is an exponential function, an incremental form of endochronic flow rules exists, which is
commonly used in standard analyses and applications.

Models of Bouc-Wen type are widely employed for modelling the cyclic behavior of structures in seismic
engineering (Baber and Wen, 1981; Sivaselvan and Reinhorn, 2000) and for representing hysteresis of mag-
neto-rheological dampers in semi-active control applications (Sain et al., 1997; Jansen and Dyke, 2000).
The strict relationship between endochronic and Bouc-Wen type models has been mentioned several times
in the literature (see, among others, Karray and Bouc, 1989; Casciati, 1989). Recently, Erlicher and Point
(2004) showed that the fundamental element of this relationship is the choice of an appropriate intrinsic
time.

Endochronic theory and classical internal variable theory have been compared by using several ap-
proaches: Bažant (1978) observed that for endochronic theory the notion of loading surface can still be
introduced, but it looses its physical meaning; Valanis (1980) and Watanabe and Atluri (1986) proved that
a NLK hardening model can be derived from an endochronic model by imposing a special intrinsic time
definition. Moreover, a comparative study between NLK hardening and generalized plasticity models
has been presented by Auricchio and Taylor (1995). A tight relationship between endochronic theory
and generalized plasticity is also expected to exist, but, by the authors� knowledge, no analysis on this sub-
ject has been done. More generally, there is a lack of unified theoretical framework, on which formal com-
parisons between these plasticity theories could be based. The main goal of this paper is the formulation of
this theoretical framework using the classical notion of generalized normality (Moreau, 1970; Halphen and
Nguyen, 1975). As a result, a new formulation of endochronic and NLK hardening models as well as gen-
eralized plasticity models is suggested and is used to investigate the relationships between them.
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The paper is organized as follows: in the first section, the standard theoretical framework of thermom-
echanics is briefly recalled, with reference to the notions of pseudo-potential and generalized normality as
well as Legendre–Fenchel transform and dual pseudo-potential. In the following sections, several plasticity
models are presented and are shown to fulfil the generalized normality assumption. The Prandtl–Reuss and
endochronic models are considered first, in both standard and multi-layer formulations. Then, NLK hard-
ening model and generalized plasticity follow. The discussion is limited to initially isotropic materials,
whose plastic behavior is governed by the second invariant of the deviatoric stress, J2, known as von Mises
or J2 materials. No stability analysis is provided, as it is beyond the purposes of this contribution.
2. General thermodynamic framework

Under the assumption of infinitesimal transformations, the classical expression of the local form of the
first and second principle of thermodynamics can be written as follows:
T _s ¼ � _W� s _T � div ðqÞ þ r þ r: _e ð1Þ

UsðtÞ ¼ _sþ div
q

T

� �
� r

T
P 0 ð2Þ
where the superposed dot indicates the time derivative; s is the entropy density per unit volume, q is the
vector of the flowing out heat flux, T is the absolute temperature, r is the rate of heat received by the unit
volume of the system from the exterior; r is the second order symmetric Cauchy stress tensor; e is the tensor
of small total strains; Us(t) is the rate of interior entropy production. In the vector space of all second order
tensors, the Euclidean scalar product : is defined by x:y = xijyij; the vector subspace of second order sym-
metric tensors is denoted by S2. The Helmholtz free energy density per unit volume is a state function de-
fined as
W ¼ Wðe; T ; v1; . . . ; vN Þ ¼ WðvÞ ð3Þ

where v1, . . . ,vN, are the tensorial and/or scalar internal variables, related to the non-elastic evolution and
v = {e,T,v1, . . . ,vN} is the vector containing all the state variables, namely the total strain tensor, the tem-
perature and the internal variables.

For isothermal conditions, the use of Eq. (1) in the inequality (2) leads to
UmðtÞ: ¼ TUsðtÞ ¼ T _s ¼ r: _e� _W P 0 ð4Þ

which states that the intrinsic or mechanical dissipation Um (rate of energy per unit volume) must be non-
negative. The non-dissipative thermodynamic forces are defined as functions of the free energy density W
(see, among others, Frémond, 2002)
rnd :¼ oW
oe
; snd

i :¼ oW
ovi

() qnd ¼ oW
ov

ð5Þ
The non-dissipative stress rnd is associated with the observable variable e, while snd
i are associated with

the internal variables vi. All non-dissipative forces can be collected in qnd ¼ ðrnd ; snd
1 ; . . . ; snd

N Þ. Hence, by
substituting (5) into (4), one obtains
UmðtÞ ¼ ðr� rndÞ: _e�
XN

i¼1

snd
i � _vi ¼ r: _e� qnd � _v P 0 ð6Þ
where _v is the vector of the fluxes, belonging to a suitable vector space V. The vector spaces considered in
this paper are isomorph to Rn and the same hold for their dual V� (see Appendix A). The symbol Æ indicates
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the scalar product of two objects having the same structure: two tensors, two scalar variables or two col-
lections of tensorial and/or scalar variables (the same notation has been used e.g. by Jirásek and Bažant
(2002, p. 428)). The inequality (6) can be written in a slightly different manner, by introducing the dissipative

thermodynamic forces
qd ¼ ½rd ; sd
1 ; . . . ; sd

N � :¼ ½r� rnd ;�snd
1 ; . . . ;�snd

N � 2 V� ð7Þ

Hence,
UmðtÞ ¼ rd : _eþ
XN

i¼1

sd
i � _vi ¼ qd � _v P 0 ð8Þ
The forces qd have to be defined in such a way that the couple ðqd ; _vÞ always fulfils the inequality (8).
Therefore, some additional complementary rules have to be introduced. They can be defined by assuming
the existence of a non-negative, proper, convex and lower semi-continuous function / : V! ð�1;1�
(Appendix A, item 2), called pseudo-potential, in general non-differentiable, such that /(0) = 0 and:
qd 2 o/ð_vÞ ð9Þ

where o indicates the sub-differential operator (see Appendix, item 3). This condition is called generalized

normality. A more detailed way of writing (9) is
qd 2 o/ð_v0;vÞj _v0¼_v ð10Þ

As a matter of fact, / is a general function of the fluxes _v0 and may also depend on the state variables v.

However, the subdifferential is taken, by definition, only with respect to the fluxes _v0 and the thermody-
namic force qd corresponds to the subdifferential of / at _v0 ¼ _v, where _v is the actual flow. By using the prop-
erties of sub-differentials, it can be proved that for dissipative forces defined by (9), the inequality qd � _v P 0
is always fulfilled (Appendix A, item 4). Therefore, the second principle (8) is also satisfied.

A dual pseudo-potential /� : V� ! ð�1;1� can be defined by the Legendre–Fenchel transform of /:
/�ðqd 0 Þ: ¼ sup
_v02V
ðqd 0 � _v0 � /ð _v0ÞÞ ð11Þ
When / has an additional dependence on the state variables v, then (11) leads to /� ¼ /�ðqd 0 ;vÞ. It can be
proved that the dual pseudo-potential is a non-negative, proper, convex and lower semi-continuous func-
tion of qd 0 , such that /*(0) = 0 (see Appendix A, item 5). The dual normality condition reads
_v 2 o/�ðqdÞ ð12Þ

where qd is the actual value of the dissipative force. The expression (12) is equivalent to
_v 2 o/�ðqd 0 ;vÞjqd0 ¼qd ð13Þ
and it guarantees that qd � _v P 0 (Appendix A, item 5). Moreover, it defines the complementarity rules of
generalized standard materials (Halphen and Nguyen, 1975), sometimes called fully associated materials (Jir-
ásek and Bažant, 2002, p. 452).

Plasticity is characterized by a rate-independent memory effect (Visintin, 1994, p. 13). This special behav-
ior occurs when the pseudo-potential / is a positively homogeneous function of order 1 with respect to the
fluxes _v0. In this case, provided that qd is computed from (9) or that _v derives from (12), it can be proved that
the pseudo-potential at _v is equal to the intrinsic dissipation, viz. /ð _vÞ ¼ qd � _v ¼ Um (Appendix A, item 6).
Moreover, the dual pseudo-potential /* becomes the indicator function of a closed convex set E � V� and
the normality rule (12) entails that, given the dissipative force qd 2 E, the flux _v fulfils the following condition:
8qd 0 2 E ðqd 0 � qdÞ � _v 6 0 ð14Þ
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viz. for a given dissipative force qd, the flow _v defined by (14) (or, equivalently, by (12) or (13)) is such that
its power when it is associated to the actual force qd is always greater or equal to the power qd 0 � _v of all the
other dissipative forces qd 0 2 E (generalized maximum-dissipation principle (Halphen and Nguyen, 1975)).
When qd 2 oE, the inequality (14) indicates that _v belongs to the cone orthogonal to oE at the point qd.
When qd 2 intðEÞ, it forces the flow _v to be zero (Appendix A, item 7).
3. Prandtl–Reuss model

3.1. Perfectly plastic Prandtl–Reuss model

In order to illustrate the general procedure that is adopted hereinafter, the basic example of the Prandtl–
Reuss model is considered first. The relevant state variables are the total and the plastic strain v = (e, ep) and
qnd = (rnd,snd) are the associated non-dissipative thermodynamic forces. The usual quadratic form of the
Helmholtz free energy density W is used, in order to preserve the linear dependence of all non-dissipative
forces with respect to state variables:
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ ð15Þ
For isotropic materials, the fourth-order tensor of the elastic moduli is equal to C ¼
ðK � 2

3
GÞ1� 1þ 2GI, where K is the (isothermal) bulk modulus, G is the shear modulus and � is the

direct (or outer) product of two second order tensors. The assumption of isotropy is always adopted, even
if the concise symbol C is used. The non-dissipative forces associated with (15) can be derived by means of
(5):
rnd ¼ C : ðe� epÞ; snd ¼ �C : ðe� epÞ ð16Þ

The evolution of the dissipative forces qd ¼ ðrd ; sdÞ 2 S2 � S2 :¼ V� is defined by introducing a suitable

pseudo-potential /, which is a function of the fluxes _v0 ¼ ð_e0; _ep0 Þ 2 S2 � S2 :¼ V (· is the cartesian
product):
/ð_e0; _ep0 Þ ¼
ffiffiffi
2

3

r
ryk_ep0 k þ IDð_e

0; _ep0 Þ

D ¼ ð_e0; _ep0 Þ 2 V such that tr ð_ep0 Þ ¼ 0
n o ð17Þ
where tr (u) indicates the trace of the tensor u 2 S
2. The norm of the second order symmetric tensor u is

given by kuk ¼ ffiffiffiffiffiffiffiffiffiffi
uijuij
p

. If in addition tr (u) = uii = 0, then kuk2 = 2J2(u) where J2(u) is the second invariant
of the deviatoric part of u; ry is the one-dimensional tension stress limit and ID is the indicator function of
the set D, namely ID ¼ 0 if tr ð_ep0 Þ ¼ 0 and ID ¼ þ1 elsewhere. This set is the effective domain of / (Appen-
dix A, item 2). The pseudo-potential / is a homogeneous function of order 1 with respect to ð_e0; _ep0 Þ and
therefore a rate-independent constitutive behavior is expected and the dissipation Um is equal toffiffi

2
3

q
ryk_epk, where _ep is the actual plastic flow (Appendix A, item 6). The indicator function ID accounts

for the fact that plastic deformation occurs without volume changes (plastic incompressibility). This
assumption is usual for metals and has been validated by experimental evidence.

The pseudo-potential /*, dual of /, can be computed using the Legendre–Fenchel transform (Appendix
A, item 5) and is equal to:
/�ðrd 0 ; sd 0 Þ ¼ sup
ð_e0;_ep0 Þ2D

ðrd 0 : _e0 þ sd 0 : _ep0 � /Þ ¼ IEðrd 0 ; sd 0 Þ ð18Þ
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The dual pseudo-potential /* is the indicator function of a closed convex set E. Hence, / = /** is the
support function of the same set (Appendix A, item 6). Moreover, since / does not explicitly depend on
_e0, the dual pseudo-potential /* can be written as the sum of two indicator functions (Appendix A, item 7):
/�ðrd 0 ; sd 0 Þ ¼ I0ðrd 0 Þ þ IEðsd 0 Þ

E ¼ sd 0 2 S2 such that f ðsd 0 Þ ¼ kdevðsd 0 Þk �
ffiffiffi
2

3

r
ry 6 0

( )
ð19Þ
where dev(u) is the deviatoric part of u 2 S2. The first term entails the condition rd 0 ¼ 0, while the other
indicator function IE defines a region in the sd 0 stress space. Recalling that the actual value of sd 0 , viz. sd,
fulfils the condition sd = �snd and that the only possible value for rd is zero, using (16) it is straightforward
to see that sd = r = rnd and that E can also be interpreted as a set in the r stress space. The associated func-
tion f is known as loading function and the condition f = 0 defines the plastic states. The interior of E is asso-
ciated with the elastic states and the whole (closed) set E contains all plastically admissible states. The actual
flows ð_e; _epÞ can now be derived from (19) by computing the subdifferential set of /* and then considering it
at ðrd 0 ; sd 0 Þ ¼ ðrd ; sdÞ. Hence, no restrictive conditions are imposed on _e, while the plastic strain flow reads
(Appendix A, item 7)
_ep ¼ dev ðsdÞ
kdev ðsdÞk

_k ¼ n _k with _k P 0; f ðsdÞ 6 0; _kf ðsdÞ ¼ 0 ð20Þ
Observe that f in the loading–unloading conditions in the second row of (20) is computed at the actual
stress state. The plastic multiplier _k is then evaluated by imposing the consistency condition, i.e. _k _f ¼ 0 (see
e.g. Simo and Hughes (1988)), with
_f ¼ of
osd 0

: _sd 0
� �

sd0 ¼sd

ð21Þ
Note that _f is computed from the general expression of f ðsd 0 Þ and then evaluated at the actual state
sd 0 ¼ sd . Consistency corresponds to the requirement that in order to have _k > 0, the actual dissipative force
sd 2 oE cannot leave oE during the plastic flow. Hence, by using (20) and the relationship sd = r = C:(e�ep),
one has
_f ¼ dev ðsdÞ
kdev ðsdÞk : dev ð _sdÞ ¼ n : C : _e� n : C : n _k ð22Þ
thus _k ¼ Hðf Þ hn:C:_ei
n:C:n
¼ Hðf Þhn : _ei, where hxi ¼ xþjxj

2
(McCauley brackets) and H(f) is the Heaviside function,

equal to zero for f < 0 and equal to 1 elsewhere.
In summary, the Prandtl–Reuss perfectly plastic model was formulated by means of the Helmholtz free

energy W and the pseudo-potential /; then, the dual potential /* was computed from the Legendre–Fenchel
transform of /; the subdifferential set of /* was used to define the fluxes and the consistency assumption led
to the determination of the plastic multiplier _k. In the next sections, this approach will be used to formulate
two Prandtl–Reuss models with isotropic hardening and other more complex plasticity models, such as
endochronic, NLK hardening and generalized plasticity models. In order to get this result, some non-stan-
dard expressions for the pseudo-potentials / and /* are introduced.

3.2. Classical Prandtl–Reuss model with isotropic hardening

The vector of the representative state variables for a Prandtl–Reuss model with isotropic hardening is
equal to v = (e, ep,f), while qnd = (rnd,r,Rnd) are the associated non-dissipative forces. Moreover,
_v ¼ ð_e; _ep; _fÞ 2 V ¼ S

2 � S
2 � R is the flux vector and qd ¼ ðrd ; rd ;RdÞ 2 V� ¼ S

2 � S
2 � R contains all
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dissipative thermodynamic forces. The scalar internal variable f and the associated forces Rd and Rnd are
introduced in order to represent the isotropic hardening. The Helmholtz free energy is assumed to be of the
form
Fig. 1.
ð_ep0 ; _f

0Þ
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ þ nðfÞ ð23Þ
where n(f) is a scalar function such that n(0) = 0 and dn
df ð0Þ ¼ 0. It follows that
rnd ¼ C : ðe� epÞ; snd ¼ �C : ðe� epÞ; Rnd ¼ dn
df
ðfÞ ð24Þ
The pseudo-potential is assumed of the following form:
/ð_e0; _ep0 ; _f
0Þ ¼

ffiffiffi
2

3

r
ry

_f
0 þ IDð_e

0; _ep0 ; _f
0Þ

D ¼ ð_e0; _ep0 ; _f
0Þ 2 V such that tr ð_ep0 Þ ¼ 0 and _f0 P k_ep0 k

n o ð25Þ
The first term in the expression of / is the same as in the perfectly-plastic model when _f
0

is equal to the
norm of _ep0 . The second term, that is the indicator function ID, depends not only on tr ð_ep0 Þ, but also on the
flow _f0, which is forced be greater or equal than the norm of the plastic strain flow. This inequality guar-
antees that _f0 and / are non-negative and entails that D is convex and closed (see Appendix A, item 1 and
Fig. 1a, which illustrates the projection of D on the ð_ep0 ; _f

0Þ-plane for the tension-compression case). The
dual pseudo-potential is different from (18), due to the presence of the dissipative force Rd 0 associated with
_f
0
:

/�ðrd 0 ; sd 0 ;Rd 0 Þ ¼ sup
ð_e0 ;_ep0 ; _f

0Þ2D
ðrd 0 : _e0 þ sd 0 : _ep0 þ Rd 0 _f

0 � /Þ ¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 Þ ð26Þ
where E ¼ fðsd 0 ;Rd 0 Þ 2 S2 � R such that f ðsd 0 ;Rd 0 Þ 6 0g and
f ðsd 0 ;Rd 0 Þ ¼ kdev ðsd 0 Þk �
ffiffiffi
2

3

r
ry � Rd 0

 !
ð27Þ
(b)(a)

Classical Prandtl–Reuss model. Tension-compression case. (a) Projection of the pseudo-potential effective domain D on the
-plane. This set is indicated by D. (b) Domain E associated with the dual pseudo-potential /*.
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The loading function f defines a convex and closed region E in the ðsd 0 ;Rd 0 Þ space, where the actual value

of Rd 0 , viz. Rd ¼ �Rnd ¼ � dnðfÞ
df governs isotropic hardening (or softening). The limit stress becomes greater

than its initial value
ffiffi
2
3

q
ry when dnðfÞ

df P 0 and less when dnðfÞ
df 6 0. Fig. 1b illustrates the set E. The flow rules

follow from the generalized normality conditions:
_ep ¼ dev ðsdÞ
kdev ðsdÞk

_k ¼ n _k; _f ¼ _k with _k P 0; f 6 0; _kf ¼ 0 ð28Þ
The flow of the internal variable f is equal to the plastic multiplier _k, which can be evaluated by imposing
the consistency condition:
_f ¼ of
osd 0

: _sd 0 þ of

oRd 0
_R

d 0
� �

ðsd0 ¼sd ;Rd0 ¼Rd Þ
¼ 0 ð29Þ
It follows that
_k ¼ Hðf Þ hn : C : _ei
n : C : nþ d2nðfÞ

df2

¼ Hðf Þ hn : _ei
1þ 1

2G
d2nðfÞ

df2

ð30Þ
where H(f) and h i still indicate the Heaviside function and McCauley brackets, respectively.

3.3. Modified Prandtl–Reuss model with isotropic hardening

The classical model of the previous section can be extended as follows. Assume the state variables
v = (e, ep,f) and let the Helmholtz energy be equal to
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ þ nðfÞ ð31Þ
As a result, the non-dissipative forces are the same as in Eq. (24). Then, a generalized definition of the
pseudo-potential / is adopted:
/ð_e0; _ep0 ; _f
0
;fÞ ¼

ffiffiffi
2

3

r
rygðfÞ �

dnðfÞ
df

 !
_f
0 þ IDð_e

0; _ep0 ; _f
0Þ

D ¼ f ð_e0; _ep0 ; _f
0Þ 2 V such that tr ð_ep0 Þ ¼ 0 and _f

0
P k_ep0 k g

ð32Þ
In this case, / explicitly depends on the internal variable f, by means of dnðfÞ
df and of the function g(f),

positive and such that g(0) = 1. In the particular case where gðfÞ ¼ 1þ dnðfÞ
df

ffiffi
3
2

q
1
ry

, the classical expression

given in Eq. (25) is recovered. The dual pseudo-potential /* can be evaluated from the standard procedure,
thus yielding:
/�ðrd 0 ; sd 0 ;Rd 0 ;fÞ ¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 ;fÞ ð33Þ

where E ¼ fðsd 0 ;Rd 0 Þ 2 S

2 � R such that f ðsd 0 ;Rd 0 ;fÞ 6 0g and
f ðsd 0 ;Rd 0 ;fÞ ¼ kdev ðsd 0 Þk �
ffiffiffi
2

3

r
rygðfÞ �

dnðfÞ
df
� Rd 0

 !
ð34Þ
In Fig. 2, the projection of D on the ð_ep0 ; _f
0Þ-plane and the set E are depicted for the tension-compression

case, with the assumption n(f) = 0. The flow rules are the same as in the previous case and they are reported
below for completeness:



(a) (b)

Fig. 2. Modified Prandtl–Reuss model. Tension-compression case with n(f) = 0. (a) Projection of the pseudo-potential effective
domain D on the ð_ep0 ; _f

0Þ-plane. This set is indicated by D. (b) Different configurations of the domain E. The position of E changes
according to the value of the internal variable f. The point (sd,Rd), representing the actual state, always lies on the axis Rd 0 ¼ 0.
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_ep ¼ dev ðsdÞ
kdev ðsdÞk

_k ¼ n _k; _f ¼ _k with _k P 0; f 6 0; _kf ¼ 0 ð35Þ
In this case, _f has to be computed accounting for the state variables. Hence, consistency condition reads
_f ¼ of
osd 0

: _sd 0 þ of

oRd 0
_R

d 0 þ of
of

_f

� �
ðsd0 ¼sd ;Rd0 ¼Rd Þ

¼ 0 ð36Þ
and the plastic multiplier becomes equal to:
_k ¼ Hðf Þ hn : C : _ei
n : C : nþ

ffiffi
2
3

q
ry

dgðfÞ
df

¼ Hðf Þ hn : _ei
1þ

ffiffi
2
3

q
ry

2G
dgðfÞ

df

ð37Þ
provided that 1þ
ffiffi
2
3

q
ry

2G
dgðfÞ

df > 0. This condition does not prevent softening, which occurs when dgðfÞ
df 6 0.

The comparison of Eqs. (27) and (34) proves to be very interesting. First, the usual loading function only
depends on the dissipative forces, while f in Eq. (34) is also related to the internal variable f. Moreover,

since Rd ¼ �Rnd ¼ � dnðfÞ
df , the loading function (34) at (sd,Rd) becomes
f ðsd ;Rd ;fÞ ¼ kdev ðsdÞk �
ffiffiffi
2

3

r
rygðfÞ ð38Þ
This expression shows that the actual limit stress is equal to
ffiffi
2
3

q
rygðfÞ and is independent from the func-

tion n(f) introduced in the Helmholtz energy density (this is not the case for the classical Prandtl–Reuss
model).

The difference between the two Prandtl–Reuss models can be also explained in terms of mechanical dis-
sipation Um. For the modified Prandtl–Reuss model, it is equal to
Um ¼
ffiffiffi
2

3

r
rygðfÞ �

dnðfÞ
df

 !
_f ð39Þ
which is non-negative provided that dnðfÞ
df 6

ffiffi
2
3

q
rygðfÞ. The case of a mono-dimensional monotonic loading

is depicted in Fig. 3. The standard Prandtl–Reuss model is characterized by the fact that the energy Rd _f



(a) (b)

(c) (d)

Fig. 3. Mechanical dissipation for the case of simple tension. The hatched area is the energy �Um(t)dt dissipated during the monotonic
loading. (a) Classical Prandtl–Reuss model. (b) Modified Prandtl–Reuss model. (c) Modified Prandtl–Reuss model with
nðfÞ ¼ dn

df ðfÞ ¼ 0. (d) Modified Prandtl–Reuss model with
ffiffi
3
2

q
dn
df ðfÞ ¼ ryðgðfÞ � 1Þ: the classical model is recovered.
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associated to isotropic hardening is not dissipated. For this reason it is sometimes referred as energy blocked

in dislocations (Lemaitre and Chaboche, 1990, p. 402). Hence, the mechanical dissipation is equal to
ffiffi
2
3

q
ry

_f

for any function n(f). Conversely, for the modified Prandtl–Reuss model the amount of mechanical dissi-
pation depends, for a given function g(f), on the choice of n(f). Fig. 3b reports the case of generic functions
g(f) and n(f). Fig. 3c and d correspond to n(f) = 0 and to the case where the modified model is equal to the
classical one, respectively.

3.4. Multi-layer models of Prandtl–Reuss type

Modified Prandtl–Reuss models, defined by Eqs. (31) and (32), can be directly extended to multi-layer
models (Besseling, 1958). They consist of a system of N elastoplastic elements connected in parallel. When
every individual elements are Prandtl–Reuss models, the corresponding multi-layer model is indicated as of
the Prandtl–Reuss type. This is the case in the present section. Hence, let
W ¼
XN

i¼1

Wi ¼
XN

i¼1

1

2
ðe� e

p
i Þ: C : ðe� e

p
i Þ þ niðfiÞ

� �
ð40Þ
be the Helmholtz energy density, defined as the sum of N expressions of the type (31). The internal variable
e

p
i is the plastic strain of the generic element i, while fi is the scalar variable associated with the isotropic

hardening of the same element. All elements have by definition the same elastic modulus tensor, chosen
to be equal to C ¼ 1

N ½ðK � 2
3
GÞ1� 1þ 2GI�. The non-dissipative thermodynamic forces read:
rnd ¼
XN

i¼1

C : ðe� e
p
i Þ; snd

i ¼ �C : ðe� e
p
i Þ; Rnd

i ¼
dniðfiÞ

dfi
ð41Þ
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Let us introduce the pseudo-potential / as the sum of N independent functions of the type (32):
/ ¼
XN

i¼1

/ið_e0; _ep0

i ;
_f
0
i;fiÞ ¼

XN

i¼1

ffiffiffi
2

3

r
ryigiðfiÞ �

dniðfiÞ
dfi

 !
_f
0
i þ IDi

ð_e0; _ep0

i ;
_f
0
iÞ

" #

Di ¼ f ð_e0; _ep0

i ;
_f
0
iÞ 2 V such that tr ð_ep0

i Þ ¼ 0 and _f
0
i P k_ep0

i k g
ð42Þ
The limit stresses ryi as well as the isotropic hardening functions gi(fi) are, in general, distinct. The con-
jugated pseudo-potential is in turn the sum of N independent functions, i.e. /� ¼

PN
i¼1/

�
i with
/�i ðrd 0 ; sd 0

i ;R
d 0

i Þ ¼ sup
ð_e0 ;_ep0

i ;
_f
0
iÞ2Di

ðrd 0 : _e0 þ sd 0

i : _ep0

i þ Rd 0

i
_f
0
i � /iÞ ¼ I0ðrd 0 Þ þ IEiðsd 0

i ;R
d 0

i Þ ð43Þ
where Ei ¼ fðsd 0
i ;R

d 0

i Þ 2 S2 � R such that f iðsd 0
i ;R

d 0

i ;fiÞ 6 0g and
fiðsd 0

i ;R
d 0

i ;fiÞ ¼ kdev ðsd 0

i Þk �
ffiffiffi
2

3

r
ryigiðfiÞ þ Rd 0

i þ
dniðfiÞ

dfi
ð44Þ
Therefore, N independent loading surfaces have been defined. Using the standard procedure based on
the normality assumption, N pairs of flow rules of the type (35) can be derived:
_ep
i ¼

dev ðsd
i Þ

kdev ðsd
i Þk

_ki ¼ ni
_ki; _fi ¼ _ki with _ki P 0; f i 6 0; _kifi ¼ 0 ð45Þ
Moreover, by imposing the consistency conditions and accounting for Eqs. (41) as well as the identities
sd

i ¼ �snd
i and Rd

i ¼ �Rnd
i , each plastic multiplier can be easily determined by an expression of the type (37):
_ki ¼ HðfiÞ
hni : C : _ei

ni : C : ni þ
ffiffi
2
3

q
ryi

dgiðfiÞ
dfi

¼ HðfiÞ
hni : _ei

1þ
ffiffi
2
3

q
ryi

2G
dgiðfiÞ

dfi

ð46Þ

ffiffiq

provided that 1þ 2

3

ryi

2G
dgiðfiÞ

dfi
> 0.

The Distributed Element Model (Iwan, 1966; Chiang and Beck, 1994) is recovered when gi(fi) = 1 and
ni(fi) = 0.
4. Endochronic theory

Endochronic theory was first formulated by Valanis (1971), who suggested the use of a positive scalar
variable #, called intrinsic time, in the definition of constitutive laws of plasticity models. The evolution laws
are described by convolution integrals involving past values of the state variable e and a suitable scalar
functions depending on # called memory kernel. When the memory kernel is exponential, the integral
expressions can be rewritten as simple differential equations, which, for an initially isotropic endochronic
material fulfilling the plastic incompressibility assumption, read:
tr ð _rÞ ¼ 3K tr ð_eÞ
dev ð _rÞ ¼ 2Gdev ð_eÞ � bdev ðrÞ _#

�
ð47Þ
with b > 0. These relationships are equivalent to:
r ¼ C : ðe� epÞ;
C ¼ ðK � 2

3
GÞ1� 1þ 2GI;

tr ð_epÞ ¼ 0 and _ep ¼ dev ðrÞ
2G=b

_#

8>>><
>>>:

ð48Þ
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where _# P 0 is the time-derivative of the intrinsic time. The simplest choice for the intrinsic time flow is
_# ¼ kdev ð_eÞk (Valanis, 1971). However, more complex definitions can be given, such as:
_# ¼ _f
gðfÞ ¼ f1ðfÞ _f with _f ¼ kdev ð_eÞk ð49Þ
where f is the intrinsic time scale and the positive function f1(f) = 1/g(f), such that f1(0) = 1, is sometimes
called hardening-softening function (Bažant and Bath, 1976).

4.1. A new formulation of endochronic models

In this section, the endochronic model defined by Eqs. (48) is innovatively described by its Helmholtz
free energy and a suitable pseudo-potential associated with generalized normality conditions. This ap-
proach allows for insightful comparisons between endochronic models and Prandtl–Reuss models. The
main implications will be discussed later. Let v = (e, ep,f) and qnd = (rnd,snd,Rnd) be the assumed state vari-
ables and the associated non-dissipative thermodynamic forces, respectively. They are the same as in the
Prandtl–Reuss model with isotropic hardening. The Helmholtz free energy W reads:
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ ð50Þ
This form is a particular case of the one originally proposed by Valanis (1971), since only one tensorial
internal variable, the plastic strain, is considered here. The first two non-dissipative forces rnd and snd are
the same as in Eq. (24), while Rnd = 0 since W is assumed to be independent of the scalar variable f. The
pseudo-potential is defined as follows:
/ð_e0; _ep0 ; _f
0
;e; ep; fÞ ¼ kdev ½C : ðe� epÞ�k2

2GgðfÞ=b
_f
0 þ IDð_e

0; _ep0 ; _f
0
;e; ep; fÞ

D ¼
ð_e0; _ep0 ; _f

0Þ 2 V such that

tr ð_ep0 Þ ¼ 0; _ep0 ¼ dev ½C : ðe� epÞ�
2G
b gðfÞ

_f
0
; _f

0
P 0

8><
>:

9>=
>;

ð51Þ
The first term of /, in which the stress rnd = C:(e � ep) is written as a function of the state variables, is
equal to the intrinsic dissipation Um when _f

0
assumes the actual value _f. The first condition associated

with the closed convex set D introduces the plastic incompressibility assumption, while the second condi-
tion characterizes the plastic strain flow of endochronic theory, as it can be seen by comparing it to Eqs.
(48) and (49). Finally, the positivity of _f

0
is imposed in order to guarantee that / is positive. Using the

language of the endochronic theory, the internal variable f corresponds to the intrinsic time scale, while
the intrinsic time # is defined by its flow _# ¼ _f=gðfÞ. The variable f does not directly appear in the Helm-
holtz free energy density and its associated thermodynamic forces, dissipative and non-dissipative, are
thus zero. However, f is not zero during the plastic evolution and plays an important role in the definition
of _ep.

The conjugated pseudo-potential is, in this case, of the following form:
/�ðrd 0 ; sd 0 ;Rd 0 ;e; ep; fÞ ¼ sup
ð_e0 ;_ep0 ; _f

0Þ2D
ðrd 0 : _e0 þ sd 0 : _ep0 þ Rd 0 _f

0 � /Þ ¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 ;e; ep; fÞ ð52Þ
where E ¼ fðsd 0 ;Rd 0 Þ 2 S2 � R such that f ðsd 0 ;Rd 0 ;e; ep; fÞ 6 0g and
f ðsd 0 ;Rd 0 ;e; ep; fÞ ¼ dev ðsd 0 Þ: dev ½C : ðe� epÞ�
2GgðfÞ=b � kdev ½C : ðe� epÞ�k2

2GgðfÞ=b þ Rd 0 ð53Þ



(a) (b)

Fig. 4. Endochronic model. Tension-compression case with g(f) = 1. (a) Several configurations of the set D, which is the projection of
the pseudo-potential effective domain D on the ð_ep0 ; _f

0Þ-plane. (b) Configurations of the convex set E associated with those of D. The
point (sd,Rd), representing the actual state, always lies on the axis Rd 0 ¼ 0.
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The expression (53) defines the loading function of endochronic models. It is associated with a set E in the
ðsd 0 ;Rd 0 Þ space. In Fig. 4 this set is represented in the case of tension-compression with g(f) = 1, together
with the projection of D on the ð_ep0 ; _f

0Þ-plane. This last set is indicated by D. Some important remarks have
to be made. First, as the system evolves, both sets change, due to their dependence on the internal variables.
At every instantaneous configurations, the set D is a straight line starting from the origin. The correspond-
ing sets E are half-planes orthogonal to D. Moreover, Eq. (50) entails that Rnd = �Rd = 0 and, accounting
for the indicator function I0ðrd 0 Þ in (52), it also leads to
sd ¼ �snd ¼ r ¼ C : ðe� epÞ ð54Þ

Therefore, at the actual stress state (sd,Rd) the loading function f is always equal to zero. In other words,

(sd,Rd) always belongs to oE, during both loading and unloading phases, and all the states are plastic states.
The normality conditions lead to the endochronic flow rules:
_ep ¼ dev ½C : ðe� epÞ�
2GgðfÞ=b

_k; _f ¼ _k with _k P 0 ð55Þ
Eqs. (52), (53) and (55) prove that endochronic models are associative in generalized sense. Moreover,
since f is always equal to zero at the actual state, the loading–unloading conditions reduce to the require-
ment of the plastic multiplier _k to be non-negative (see the inequality in (55)). In addition, the time deriv-
ative _f at (sd,Rd), computed accounting for the fact that f also depends on e, ep and f, is also equal to zero
and therefore, the consistency condition is automatically fulfilled and cannot be used to compute _k.

This situation is typical of endochronic theory and entails that the plastic multiplier _k ¼ _f has to be de-
fined by an additional assumption. When the function g(f) is also fixed, the plastic flow _ep and the intrinsic
time flow _# ¼ _f

gðfÞ are then known. The standard choices are g(f) = 1 and _# ¼ _f ¼ kdev ð_eÞk. It has been
shown by Erlicher and Point (2004) that more complex definitions can be chosen, such as g(f) = 1 and
_# ¼ _f ¼ kdev ðsdÞkn�2 1þ c
b

sign ðdev ðsdÞ: _eÞ
� 	

jdev ðsdÞ: _ej; �b 6 c 6 b; n > 0 ð56Þ
which effectively lead to the Karray–Bouc–Casciati model (Karray and Bouc, 1989; Casciati, 1989). It must
be noticed that both flows _ep and _f can be different from zero during unloading phases, i.e. when
dev ðsdÞ: _e < 0. This situation, which is not possible in classical plasticity, occurs when c 5 b. Fig. 5a



Fig. 5. Endochronic Karray–Bouc–Casciati model (thin lines) vs. Prandtl–Reuss model (thick line). Tension-compression case with
g(f) = 1 and n(f) = 0. (a) Influence of the parameter n on loading branches. (b) Influence of the c/b ratio on unloading branches. The
slope at r11 = 0 is the same for all c/b values.
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illustrates for the mono-dimensional case the effect of n for given values of the other parameters: in the
limit of increasing n-values the Prandtl–Reuss model is retrieved. Fig. 5b shows unloading branches for dif-
ferent c/b ratios, the other parameters being fixed: plastic strains may occur and tend to zero when c/b tends
to 1.

4.2. Endochronic theory vs. Prandtl–Reuss model

Consider the endochronic model, as formulated in the previous section, and the modified Prandtl–Reuss
model. The significant state variables e, ep and f are the same in both cases. Moreover, Eqs. (31) and (50)
show that the Helmholtz free energies differ only by the term n(f), which is zero in endochronic theory.
The main differences concern pseudo-potentials, as seen comparing Eqs. (32) and (51). However, the strict
relationship between the two models can be highlighted by imposing that _f

0 ¼ k_ep0 k in (51): when _f
0
> 0,

the condition kdev ðC : ðe� epÞÞk ¼ 2G
b gðfÞ must be fulfilled, while for _f

0 ¼ 0 there is no limitation on
dev(C:(e�ep)). As a result, the endochronic pseudo-potential (51) becomes equal to
~/ð_e0; _ep0 ; _f
0
;fÞ ¼ 2G

b
gðfÞ _f0 þ IDð_e

0; _ep0 ; _f
0Þ

D ¼ f ð_e0; _ep0 ; _f
0Þ 2 V such that tr ð_ep0 Þ ¼ 0 and _f

0 ¼ k_ep0 k g
ð57Þ
The set D and the function ~/ are not convex (see Fig. 6a). However, the Legendre–Fenchel conjugate of
~/ is still well-posed (Appendix A, item 5) and can be explicitly derived from the standard procedure:
/�ðrd 0 ; sd 0 ;Rd 0 ;fÞ ¼ sup
ð_e0;_ep0 ;_f

0Þ2D
ðrd 0 : _e0 þ sd 0 : _ep0 þ Rd 0 _f

0 � ~/Þ ¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 ;fÞ ð58Þ
with E ¼ fðsd 0 ;Rd 0 Þ 2 S2 � R such that f ðsd 0 ;Rd 0 ;fÞ 6 0g and
f ðsd 0 ;Rd 0 ;fÞ ¼ kdev ðsd 0 Þk � 2G
b

gðfÞ þ Rd 0 ð59Þ
Provided that 2G
b ¼

ffiffi
2
3

q
ry , Eqs. (58) and (59) also define the Legendre–Fenchel conjugate of the proper

convex lower semi-continuous function (Appendix A, item 5)
/ ¼ cl ðconv~/Þ ¼
ffiffiffi
2

3

r
rygðfÞ _f0 þ IDð_e

0; _ep0 ; _f
0Þ

D ¼ ð_e0; _ep0 ; _f
0Þ 2 V such that tr ð_ep0 Þ ¼ 0 and _f

0
P k_ep0 k

n o ð60Þ



(a) (b)

Fig. 6. Endochronic model vs. Prandtl–Reuss model. Tension-compression case. (a) The set D is the projection of D on the ð_ep0 ; _f
0Þ-

plane, where D is the non-convex effective domain of the pseudo-potential ~/ of Eq. (57). It defines an endochronic model where the
intrinsic time flow _f equals the norm of _ep. (b) The convex set E associated with the indicator function /* given in Eqs. (58) and (59),
which is the Legendre–Fenchel conjugated of ~/.
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which corresponds to the pseudo-potential of a modified Prandtl–Reuss model, in the case nðfÞ ¼ dnðfÞ
df ¼ 0

(see Eqs. (32)).
A similar comparison between the classical Prandtl–Reuss model (Eqs. (23) and (25)) and endochronic

models is possible as well, but only when the former is perfectly plastic, i.e. if n(f) = 0, and conditions
n(f) = 0 and g = 1 hold in the latters. Note that these assumptions have been adopted in Fig. 5.

4.3. Multi-layer models of endochronic type

The concept of assembling in parallel several plastic elements can be applied to the case in which each
element is of endochronic type. The approach is analogous to the one adopted in Section 3.4. Let e and
ðep

i ; fiÞ be the relevant state variables. Then, the Helmholtz energy is defined as the sum of N contributions,
of the same kind as in Eq. (50):
W ¼
XN

i¼1

Wi ¼
XN

i¼1

1

2
ðe� e

p
i Þ: C : ðe� e

p
i Þ

� �
ð61Þ
where the internal variables e
p
i have the meaning of plastic strain of the i-th endochronic element. The ther-

modynamic forces associated with fi are zero, viz. Rnd
i ¼ 0. Moreover, N independent pseudo-potentials are

assumed to be of the type (51):
/i ¼
kdev ½C : ðe� e

p
i Þ�k

2

2GgiðfiÞ=bi

_f
0
i þ IDi

ð_e0; _ep0

i ;
_f
0
i;e; e

p
i ; fiÞ

Di ¼
ð_e0; _ep0

i ;
_f
0
iÞ 2 V such that

tr ð_ep0

i Þ ¼ 0; _f
0
i P 0 and _ep0

i ¼
dev ½C : ðe� e

p
i Þ�

2GgiðfiÞ=bi

_f
0
i

8><
>:

9>=
>;

ð62Þ
with bi > 0, gi(fi) > 0 and gi(0) = 1. The pseudo-potential of the multi-layer model is / ¼
PN

i¼1/i and its
dual is /� ¼

PN
i¼1/

�
i , with
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/�i ¼ sup
ð_e0 ;_ep0

i ;
_f
0
iÞ2Di

ðrd 0 : _e0 þ sd 0

i : _ep0

i þ Rd
i
_f
0
i � /iÞ ¼ I0ðrd 0 Þ þ IEiðsd 0

i ;R
d 0

i ;e; ep
i ; fiÞ ð63Þ
where Ei ¼ fðsd 0
i ;R

d 0

i Þ 2 S2 � R such that f iðsd 0
i ;R

d 0

i ;e; ep
i ; fiÞ 6 0g and
fi ¼
dev ðsd 0

i Þ: dev ½C : ðe� e
p
i Þ�

2GgiðfiÞ=bi
� kdev ½C : ðe� e

p
i Þ�k

2

2GgiðfiÞ=bi
þ Rd 0

i ð64Þ
The flow rules then become of the form (55). Moreover, it can be easily proved that at the actual state
represented by ðsd

i ;R
d
i Þ, the identities fi ¼ _f i ¼ 0 hold and, for this reason, the fluxes _fi ¼ _ki P 0 cannot be

computed from the consistency conditions and have to be defined using a further assumption.
If the number of elements is N = 2, g1 = g2 = 1 and both fluxes _f1 and _f2 are of the form (56), then the

model of Casciati (1989) is retrieved. Moreover, the condition _f
0
i ¼ k_ep0

i k into (62) leads to a multi-layer
model of Prandtl–Reuss type (see Section 4.2).
5. Non-linear kinematic hardening models

The NLK hardening rule was first suggested by Armstrong and Frederick (1966), who introduced a
dynamic recovery term in the classical Prager�s linear kinematic hardening rule. Several modifications of
this basic rule have been proposed, in order to improve the description of the cyclic behavior of met-
als, particularly for the ratchetting phenomenon (see, among others, Chaboche, 1991; Ohno and Wang,
1993).

According to traditional formulation, NLK hardening models do not fulfil the assumption of generalized
normality (Lemaitre and Chaboche, 1990, pp. 219–221; Chaboche et al., 1995). Following an approach
based on the notion of bipotential, De Saxcé (1992) introduced implicit standard materials and showed that
the plasticity models with NLK hardening rules are of such type.

In this section, another formulation is suggested, which leads to the proof that NLK hardening models
belong to the class of generalized standard materials, provided that a suitable, non-conventional, loading
function is defined. First, the state variables v = (e, ep,f,b,f1) have to be introduced. The first three are the
same as for Prandtl–Reuss and endochronic models, while b and f1 are related to NLK hardening rule. The
role of the scalar variable f1 will be discussed later on. The corresponding thermodynamic forces are
qnd ¼ ðrnd ; snd ;Rnd ;Xnd ;Rnd

1 Þ and qd ¼ ðrd ; sd ;Rd ;Xd ;Rd
1Þ 2 V�. The Helmholtz energy density is chosen as

follows:
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ þ 1

2
ðep � bÞ: D : ðep � bÞ ð65Þ
The quantity a = ep � b is usually adopted as the internal variable associated with the kinematic hard-
ening. However, the choice of b as a representative internal variable appears more suited, because it
highlights the formal analogy between the first quadratic term in Eq. (65), typical of plasticity models,
and the second one, associated with the kinematic hardening. The isotropy assumption leads to the usual
expression for C and entails that D = D11�1 + D2I. The non-dissipative forces can then be readily
evaluated:
rnd ¼ C : ðe� epÞ
snd ¼ �C : ðe� epÞ þD : ðep � bÞ; Rnd ¼ 0

Xnd ¼ �D : ðep � bÞ; Rnd
1 ¼ 0

ð66Þ
The three tensorial non-dissipative forces are related by the identity snd = �rnd � Xnd. Moreover, let the
pseudo-potential be equal to
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/ ¼
ffiffiffi
2

3

r
rygðfÞ _f

0 þ kD : ðep � bÞk2

D2

d g1ðf1Þ
_f
0
1 þ IDð_e

0; _ep0 ; _f
0
; _b
0
; _f
0
1;e; ep; f; b; f1Þ

D ¼

ð_e0; _ep0 ; _f
0
; _b
0
; _f
0
1Þ 2 V such that

tr ð_ep0 Þ ¼ 0; _f
0
P k_ep0 k;

tr ð _b0Þ ¼ 0; _b
0 ¼ D : ðep � bÞ

D2

d g1ðf1Þ
_f
0
1;

_f
0
1 ¼ hðe; ep; f; b; f1Þ _f

0
P 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð67Þ
with d, g(f), g1(f1) > 0 and g(0) = g1(0) = 1. Fig. 7 shows two projections of the effective domain D for the
tension-compression case. The first term in the definition of / is identical to that of Eq. (32) for a modified
Prandtl–Reuss model with n(f) = 0. The second term is related to the NLK hardening and it is formally

identical to the one used in the definition of endochronic models (see Eq. (51)), with the substitutions de-
v(e)! ep, ep! b and f! f1. The same analogy applies to the conditions defining the set D.

The dual pseudo-potential then becomes
/� ¼ sup
ð_e0;_ep0 ;_f

0
; _b
0
; _f
0
1Þ2D

rd 0 : _e0 þ sd 0 : _ep0 þ Rd 0 _f
0 þ Xd 0 : _b

0 þ Rd 0

1
_f
0
1 � /

� �

¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 ;Xd 0 ;Rd 0

1 ;e; ep; f; b; f1Þ ð68Þ
where E ¼ fðsd 0 ;Rd 0 ;Xd 0 ;Rd 0

1 Þ 2 S2 � R� S2 � R such that f 6 0g and
f ¼ kdev ðsd 0 Þk �
ffiffiffi
2

3

r
rygðfÞ þ Rd 0 þ Xd 0 : ½D : ðep � bÞ�

D2g1ðf1Þ=d
� kD : ðep � bÞk2

D2g1ðf1Þ=d
þ Rd 0

1

 !
hðe; ep; f; b; f1Þ ð69Þ
Eq. (69) defines the loading function of a model with NLK hardening and the associated set E is depicted
in Fig. 8 for the tension-compression case when g(f) = 1. The normality condition associated with /* leads
to the following flow rules:
_ep ¼ dev ðsdÞ
kdev ðsdÞk

_k ¼ n _k; _f ¼ _k

_b ¼ D : ðep � bÞ
D2g1ðf1Þ=d

hðe; ep; f; b; f1Þ _k; _f1 ¼ hðe; ep; f; b; f1Þ _k

with _k P 0; f 6 0; _kf ¼ 0

ð70Þ
(a) (b)

NLK hardening model. Tension-compression case. (a) Projection of the effective domain D on the ð_ep0 ; _f
0Þ-plane. (b) Projection

n the ð _b0; _f
0
1Þ-plane.



(a) (b)

Fig. 8. NLK hardening model. Tension-compression case with g(f) = 1. (a) Condition f 6 0 when Rd 0

1 ¼ Rd
1 ¼ 0 and

Xd 0 ¼ Xd ¼ D : ðep � bÞ. (b) Condition f 6 0 when Rd 0 ¼ Rd ¼ 0 and kdev ðsd 0 Þk ¼ kdev ðsdÞk ¼
ffiffi
2
3

q
ry .
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The thermodynamic force Xd = �Xnd = D:(ep � b) is traceless, due to the assumptions adopted for the
traces of _ep and _b. Special attention must be paid to the relationship between the fluxes _f1 and _f. The time
derivative of f1 is defined as the product between _f and the function h, which depends on the state variables
and must be non-negative and finite, but is otherwise free. The variable f1 can be interpreted as an intrinsic

time scale for the NLK hardening flow rule.
Accounting for the identities ðsnd ;Rnd ;Xnd ;Rnd

1 Þ ¼ �ðsd ;Rd ;Xd ;Rd
1Þ and Eqs. (66), one can prove that

Rd = 0 and that the term proportional to h in Eq. (69) is always zero at the actual state. Hence, only the
first two terms in the expression of f affect the consistency condition _f ¼ 0, which leads to the plastic
multiplier
_k ¼ Hðf Þ hn : _ei
1þ D2

2G� 1
2G

n:Xd

g1ðf1Þ=d
hðe; ep; f; b; f1Þ þ

ffiffi
2
3

q
ry

2G
dgðfÞ

df

ð71Þ
The positive functions g, g1 and h determine the actual model.
The choice g = g1 = h = 1 corresponds to the basic NLK hardening model of Armstrong and Frederick

(1966). Another interesting case is given by g = g1 = 1 and
h ¼ kD : ðep � bÞk
D2=d

� 	m1

hk1 : ni if D : ðep � bÞ 6¼ 0

h ¼ 0 if D : ðep � bÞ ¼ 0

8<
: ð72Þ
where m1 > 0 and k1 ¼ D:ðep�bÞ
kD:ðep�bÞk is the unit vector having the same direction as Xd ¼ D : ðep � bÞ. These con-

ditions lead to
_b ¼ Xd

D2=d
_f1 ¼

Xd

D2=d
kXdk
D2=d

� 	m1

hk1 : _epi ¼ _ep �
_X

d

D2

ð73Þ
which is the NLK hardening rule proposed by (Ohno and Wang, 1993) for modelling the ratchetting phe-
nomenon in metal plasticity. It is interesting to compare the quantity
_f1 ¼ h _f ¼ kXdk
D2=d

� 	m1

hk1 : _epi ð74Þ



S. Erlicher, N. Point / International Journal of Solids and Structures 43 (2006) 4175–4200 4193
and the intrinsic time flow _#, defined in Eq. (56) for endochronic models of the Bouc-Wen type. Two sig-
nificant differences can be observed: (i) the governing flow variable is the plastic strain for NLK hardening
rule and the total strain for the flow rule of the endochronic model; (ii) due to presence of the absolute value

instead of the McCauley brackets, the endochronic model of Bouc-Wen type introduces non-zero flows
during unloading phases when c 5 b.

5.1. From an endochronic model to a NLK hardening model

Valanis (1980) and Watanabe and Atluri (1986) proved that a NLK hardening model can be derived
from the endochronic theory by adopting a special intrinsic-time definition, namely when the intrinsic time
scale flow _f is forced to be equal to the norm of the plastic strain flow. The approach suggested in this paper
not only confirms this result, but allows for a generalization, due to the presence of a second intrinsic time
scale f1, in general distinct from f. Consider the differential equations defining an endochronic model with a
kinematic hardening variable Xd:
tr ð _rÞ ¼ 3Ktr ð_eÞ
dev ð _rÞ ¼ 2Gdev ð_eÞ � bdev ðr� XdÞ _f

gðfÞ

tr ð _X
dÞ ¼ 0

_X
d ¼ D2 _ep � dXd _f1

g1ðf1Þ
_f1 ¼ hðe; ep; f; b; f1Þ _f

8>>>>>>><
>>>>>>>:

ð75Þ
The idea of a kinematic hardening variable in an endochronic model was first suggested by Bažant
(1978), who however considered a linear evolution of Xd as function of the plastic strain. An alternative
way to describe the model defined by (75) is
r ¼ C : ðe� epÞ Xd ¼ D : ðep � bÞ
C ¼ K � 2

3
G


 �
1� 1þ 2GI D ¼ D11� 1þ D2I

tr ð_epÞ ¼ 0; _ep ¼ dev ðr� XdÞ
2G
b gðfÞ

_f tr ð _bÞ ¼ 0; _b ¼ Xd

D2

d g1ðf1Þ
_f1

_f1 ¼ hðe; ep; f; b; f1Þ _f

8>>>>>><
>>>>>>:

ð76Þ
Moreover, both Eqs. (75) and (76) can be derived from (65) and the following pseudo-potential:
/ ¼ kdev ½C : ðe� epÞ �D : ðep � bÞ�k2

2G
b gðfÞ

_f
0 þ kD : ðep � bÞk2

D2

d g1ðf1Þ
_f
0
1 þ IDð_e

0; _ep0 ; _f
0
; _b
0
; _f
0
1;e; ep; f;b; f1Þ

D ¼
ð_e0; _ep0 ; _f

0
; _b
0
; _f
0
1Þ 2V such that trð_ep0 Þ ¼ 0; _ep0 ¼ dev ½C : ðe� epÞ �D : ðep � bÞ�

2G
b gðfÞ

_f
0
; _f

0
P 0;

trð _b0Þ ¼ 0; _b
0 ¼ D : ðep � bÞ

D2

d g1ðf1Þ
_f
0
1;

_f
0
1 ¼ hðe; ep; f;b; f1Þ _f

0
P 0

8>>><
>>>:

9>>>=
>>>;
ð77Þ
Let _f
0 ¼ k_ep0 k be the chosen intrinsic time definition and assume 2G

b ¼
ffiffi
2
3

q
ry . Then, introducing these con-

ditions in (77), one obtains a pseudo-potential ~/ which differs from the one of Eq. (67) only in the inequality
_f
0
P k_ep0 k, which is an equality in ~/. This difference affects neither the expression of the dual pseudo-po-

tential ~/
� ¼ /� (Appendix A, item 6) nor the flow rules, which are in both cases equal to Eqs. (68)–(69)

and Eq. (70), respectively. Moreover, in the particular case h = 1 and g(f) = g1(f), the results discussed
by Valanis (1980) and Watanabe and Atluri (1986) are retrieved.
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6. Generalized plasticity models

Generalized plasticity models (Lubliner et al., 1993) are considered an effective alternative to NLK hard-
ening models, since they behave similarly and are computationally less expensive (Auricchio and Taylor,
1995). A new description of these models is suggested here, supported by a suitable pseudo-potential
and the generalized normality assumption. In order to expose the basic principles of this new approach,
only the simple generalized plasticity model presented by Auricchio and Taylor (1995) is considered. The
extension to more complex cases is straightforward.

First, the state variables v = (e, ep,f) have to be introduced. The corresponding thermodynamic forces are
qnd = (rnd,snd,Rnd) and qd = (rd,sd,Rd). The Helmholtz energy density is chosen as follows:
W ¼ 1

2
ðe� epÞ: C : ðe� epÞ þ 1

2
ep : D : ep ð78Þ
The expression for C and D are the same as in NLK hardening models. The non-dissipative forces can be
readily evaluated:
rnd ¼ C : ðe� epÞ; snd ¼ �C : ðe� epÞ þD : ep; Rnd ¼ 0 ð79Þ

Note that rnd and snd are related by the identity snd = �(rnd � D:ep), where the backstress D:ep introduces

a linear kinematic hardening effect. Moreover, let the pseudo-potential be equal to
/ð_e0; _ep0 ; _f
0
;e; ep; fÞ ¼ �gðe; ep; fÞ _f0 þ IDð_e

0; _ep0 ; _f
0Þ

D ¼ f ð_e0; _ep0 ; _f
0Þ 2 V such that tr ð_ep0 Þ ¼ 0 and _f

0
P k_ep0 k g

ð80Þ
where
�gðe; ep; fÞ ¼

ffiffi
2
3

q
ry þ H isof if �f < 0

kdev ½C : ðe� epÞ �D : ep�k if �f P 0

8<
:

�f ðe; ep; fÞ: ¼ kdev ½C : ðe� epÞ �D : ep�k �
ffiffiffi
2

3

r
ry þ H isof

 ! ð81Þ
with Hiso P 0. The main characteristic of this pseudo-potential function is given by the piecewise expression
introduced to define the positive function �g. It is assumed that �g depends on the sign of the function �f ,
which in turn is related to the state variables. The conjugated pseudo-potential /* reads
/�ðrd 0 ; sd 0 ;Rd 0 ;e; ep; fÞ ¼ sup
ð_e0 ;_ep0 ; _f

0Þ2D
ðrd 0 : _e0 þ sd 0 : _ep0 þ Rd 0 _f

0 � /Þ ¼ I0ðrd 0 Þ þ IEðsd 0 ;Rd 0 ;e; ep; fÞ ð82Þ
where E ¼ fðsd 0 ;Rd 0 Þ 2 S2 � R such that f ðsd 0 ;Rd 0 ;e; ep; fÞ 6 0g and
f ðsd 0 ;Rd 0 ;e; ep; fÞ ¼
kdev ðsd 0 Þk �

ffiffi
2
3

q
ry þ H isof

� �
þ Rd 0 if �f < 0

kdev ðsd 0 Þk � kdev ½C : ðe� epÞ �D : ep�k þ Rd 0 if �f P 0

8<
: ð83Þ
The loading function f also has a twofold definition: recalling that the actual thermodynamic force sd

fulfils the following identities
sd ¼ C : ðe� epÞ �D : ep ¼ r�D : ep ð84Þ

and Rd = �Rnd = 0, one can prove that if �f ðe; ep; fÞ < 0 then f ðsd ;Rd ;e; ep; fÞ ¼ �f ðe; ep; fÞ; moreover, if
�f ðe; ep; fÞP 0, then f(sd,Rd; e, ep,f) is always zero, viz. the actual state represented by (sd,Rd) remains in
contact with the loading surface oE. In Fig. 9, this situation is depicted for the tension-compression case.



(a) (b)

Fig. 9. Generalized plasticity. Tension-compression case. (a) Projection of the pseudo-potential effective domain D on the ð_ep0 ; _f
0Þ-

plane. This set is indicated by D. (b) Several configurations of the domain E. When �f P 0, E translates upward during loading phases
and downward during unloading phases. The point (sd,Rd), representing the actual state, always lies on the axis Rd 0 ¼ 0.
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The normality conditions associated with the loading function f read:
_ep ¼ dev ðsdÞ
kdev ðsdÞk

_k ¼ n _k; _f ¼ _k with _kf ¼ 0; f 6 0; _k P 0 ð85Þ
These flow rules are identical to those of a Prandtl–Reuss model (see Eqs. (35)). However, they derive
from a different loading function and for this reason the computation of the plastic multiplier _k is not
the same. When f ðsd ;Rd ;e; ep; fÞ ¼ �f ðe; ep; fÞ < 0, the loading–unloading conditions reduce to _k ¼ 0, leading
to an elastic behavior. As a result, the function �f is also called yielding function, while the surface defined by
the condition �f ¼ 0 is called yielding surface. Conversely, when �f P 0 the set E evolves by virtue of the
dependence of f on the state variables e, ep and f. During this evolution, the actual thermodynamic forces
(sd,Rd) always satisfy the condition f = 0. Moreover, the consistency condition
_f ¼ of
osd 0

: _sd 0 þ of

oRd 0
_R

d 0 þ of
oe

: _eþ of
oep

: _ep þ of
of

_f

� �
ðsd0 ¼sd ;Rd0 ¼Rd Þ

¼ 0 ð86Þ
is also identically fulfilled and, like for the endochronic theory, it does not permit to compute _k P 0. Hence,
the condition that the so-called limit function is equal to zero has to be invoked and this leads to (Auricchio
and Taylor, 1995):
_k ¼ _f ¼

0 if �f < 0

hn : _ei

1þ NðM � �f Þ þ ðD2 þ H isoÞM
2G�f

if 0 6 �f 6 M

8>>><
>>>:

ð87Þ
where M ;N > 0. It can be proved that when �f tends to M , the expression of the plastic multiplier of a clas-
sical plasticity model with linear kinematic and isotropic hardening is retrieved. Moreover, if Hiso = 0 an
asymptotic value of ksdk exists, and is equal to

ffiffi
2
3

q
ry þM .
7. Conclusions

A common theoretical framework between Prandtl–Reuss models and endochronic theory as well as
NLK hardening and generalized plasticity models was constructed. All models were defined assuming
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generalized normality. It was therefore proved that a unique mathematical structure, based on the notions
of pseudo-potential and generalized normality, was able to contain plasticity models traditionally formu-
lated by other approaches. In particular, no extension of the generalized standard class of materials had
to be introduced to describe NLK hardening and generalized plasticity models. This approach allowed sev-
eral comparisons, that have clarified the relationships and analogies between these, a priori different, plas-
ticity theories.
Appendix A

The vector spaces considered in this paper are: (i) the space of second order tensors; (ii) the space of sym-

metric second order tensors S2; (iii) the set of real scalars R ¼ ð�1;þ1Þ; (iv) the cartesian product of a
finite number of such spaces. They are all equipped with an Euclidian product, so they are always isomorph
to the Euclidian vector space X ¼ Rn.

(1) A subset C of X is said to be:
(a) a convex set if ð1� kÞxþ ky 2 C whenever x; y 2 C and 0 < k < 1.
(b) a cone if ky 2 C when y 2 C and k > 0.
(2) Let / : X! ð�1;1� be an extended-real-valued function defined on the vector space X. Then,
(a) the epigraph of / is the set
epi/ ¼ fðy; lÞ such that y 2 X; l 2 R; l P /ðyÞg ðA:1Þ
(b) / is said to be convex on X if epi / is convex as a subset of X� R.
(c) a convex function / is said to be proper if and only if the set
D ¼ fy 2 X : /ðyÞ < þ1g ðA:2Þ
is not empty. The set D is called effective domain of /, it is convex since / is convex and is the set
where / is finite.

(d) / is said to be continuous relative to a set D if the restriction of / to D is a continuous function.
(e) / is lower semicontinuous at x 2 X if
/ðxÞ ¼ lim
y!x

inf /ðyÞ ðA:3Þ

It can be proved that the condition of lower semi-continuity of / is equivalent to have that the
level set {y:/(y) 6 a} is closed in X for every a 2 R (Rockafellar, 1969, p. 51). As a result, when
/ is a proper convex function with a (convex) effective domain D closed in X and / is continuous
relative to D, then / is lower-semicontinuous (Rockafellar, 1969, p. 52).
(3) Let X� be the dual of X. Since X ¼ Rn, then X�� ¼ X and the duality product between x and x*, ele-
ments of the dual vector spaces X and X�, can be written as x* Æ x.
Let / : X! ð�1;1� be an extended-real-valued convex function. Then, the subgradients of / at x 2 X

are elements x� 2 X� such that
8y 2 X; /ðyÞ � /ðxÞP x� � ðy� xÞ ðA:4Þ
The subdifferential set o/(x) is the set of all subgradients x* at x:
o/ðxÞ ¼ fx� 2 X� such that the condition (A.4) holdsg ðA:5Þ
The function / is said to be subdifferentiable at x when o/(x) is non-empty.
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(4) If a function / : X! ð�1;1� is convex, proper, non-negative and such that /(0) = 0, then the nor-

mality condition
x� 2 o/ðxÞ ðA:6Þ
viz. x* belongs to the subdifferential set of / at x, entails that x* Æ x P 0.
Proof. Setting y = 0 in the inequality (A.4) entails that, for any x in the effective domain of /,
�/(x) P x* Æ (0 � x). Hence, by virtue of the non-negativity of /, x* Æ x P 0.

(5) When a function / : X! ð�1;1� is proper, convex and lower semi-continuous, the dual function
/� : X� ! ð�1;1�, defined by the Legendre–Fenchel transform
8y� 2 X� /�ðy�Þ ¼ sup
y2X
ðy� � y� /ðyÞÞ ðA:7Þ
is related to / by a one-to-one correspondence, in the sense that for such a kind of functions, the
conjugate /* is in turn proper, convex and lower semi-continuous and /** = / (Rockafellar, 1969,
p. 104). Under these assumptions, it also holds:
8y� 2 X� /�ðy�Þ ¼ sup
y2D
ðy� � y� /ðyÞÞ ðA:8Þ
Moreover, the following relationships are equivalent:
(i) x*2o/(x)

(ii) x2o/*(x*)
(iii) /ðxÞ þ /�ðx�Þ ¼ x� � x ðA:9Þ
* *
Condition (i) is equivalent to x Æ x�/(x) P x Æ y � /(y). The supremum of the second term of this
inequality is equal by definition to /*(x*) and occurs when y = x and therefore (iii) is the same as
(i). Dually, (ii) and (iii) are equivalent.
Remark 1. Under the previous assumptions, if / P 0 and /(0) = 0, then (A.7) entails that /*(0) = 0.
Moreover, the identity /** = / implies that /ð0Þ ¼ supy�2X� ð�/�ðy�ÞÞ, which in turn leads to /* P 0.
Reciprocally, /* P 0 and /*(0) = 0 entail that / P 0 and /(0) = 0.

Remark 2. If /* is such that /* P 0 and /*(0) = 0, then the normality condition (ii) implies that x* Æ x P 0.

Proof. Condition (ii) is equivalent to (i), with / P 0 and /(0) = 0. Then, using the result of item 4, the non-
negativity of x* Æ x follows.

Remark 3. The conjugate ~/
�

of an arbitrary function ~/ : X! ð�1;1� can still be defined by (A.7). In
this case, ~/

�
is proper, convex, lower semi-continuous and is equal to the conjugated /* of

/ ¼ clðconv ~/Þ, where / is the greatest proper convex lower semi-continuous function majorized by ~/
(Rockafellar, 1969, pp. 52, 103–104).

(6) A function / : X! ð�1;1� is positively homogeneous of order 1 if and only if
8y 2 X; 8q 2 ð0;1Þ; /ðqyÞ ¼ q/ðyÞ ðA:10Þ
The epigraph of such functions is a cone (Rockafellar, 1969, p. 30).
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Given / : X! ð�1;1�, the following three statements are equivalent:

(i) / is proper, convex, lower semi-continuous and positively homogeneous of order 1.
(ii) The Legendre–Fenchel conjugate /* of / is the indicator function of a non-empty, convex and closed

set E, i.e.
/�ðy�Þ ¼ IEðy�Þ ¼
0 if y� 2 E

þ1 if y� 2 E

(

(iii) / is the support function of a non-empty, convex and closed set E, i.e.
/ðyÞ ¼ I�
E
ðyÞ ¼ sup

y�2E
ðy� � yÞ
The equivalence between (i) and (ii) can be proved by showing that /* has no values other than 0 and
+1 (Rockafellar, 1969, p. 114). The set where /* = 0 is non-empty, convex and closed since / is proper,
convex and lower semi-continuous. The equivalence between (ii) and (iii) follows from the definition of
Legendre–Fenchel transform, support functions and indicator functions.

Remark. If / fulfils conditions in (i), then for any x where / is subdifferentiable,
/ðxÞ ¼ /��ðxÞ ¼ x� � x with x� 2 o/ðxÞ
Proof. From the equivalence between (i) and (ii), the conjugated of / is the indicator function of a closed
convex set E and x� 2 E since / is subdifferentiable at x by assumption. Then, use Eq. (A.9) and recall by
(ii) that /*(x*) = 0.

(7) Let / : X! ð�1;þ1� be a proper, convex, lower semi-continuous function, positively homoge-
neous of order 1. Then:

(i) From item (6), its conjugate /* is the indicator function of a non-empty, closed and convex set E.
Hence, by using the definition (A.4),
o/�ðx�Þ ¼ oIEðx�Þ ¼
0 if x� 2 intðEÞ
Cðx�Þ if x� 2 oE

£ if x� 62 E

8><
>: ðA:11Þ

where Cðx�Þ ¼ fx 2 X : 8y� 2 E x � ðy� � x�Þ 6 0g is the so-called normal cone at x� 2 oE.
(ii) If in addition / does not depend on some components y1 of y ¼ ðy1; y2Þ � X ¼ X1 �X2, i.e.

/ðyÞ ¼ /ðy1; y2Þ ¼ /̂ðy2Þ, then the conjugated function /* can be computed as follows:
/�ðy�1; y�2Þ ¼ sup
ðy1;y2Þ2X

ðy�1 � y1 þ y�2 � y2 � /̂ðy2ÞÞ ¼ I0ðy�1Þ þ sup
y22X2

ðy�2 � y2 � /̂ðy2ÞÞ ¼ I0ðy�1Þ þ IEðy�2Þ

ðA:12Þ

The Legendre–Fenchel conjugate is the indicator function of 0 with respect to y�1 plus the Legendre–
Fenchel conjugate of /̂ðx2Þ, which is the indicator function of a non-empty, closed and convex set E.
Hence,

x 2 oIEðx�Þ () x1 2 X1 and x2 2 oIEðx�2Þ
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In the particular case where E ¼ fy� 2 X� such that f ðy�Þ 6 0g, where f is a convex and smooth func-
tion, the normality condition at y* = x*, viz. x 2 oIEðx�Þ, can be written as follows

x ¼ l grad f ðx�Þ with
l ¼ 0 for f ðx�Þ < 0

l P 0 for f ðx�Þ ¼ 0

�

These two last conditions are often replaced by

l P 0; f ðx�Þ 6 0; lf ðx�Þ ¼ 0 ðA:13Þ
which are the classical loading–unloading conditions of plasticity, usually written with l replaced by
the plastic multiplier _k. The dependence of f on the argument x* is often omitted in order to simplify
the notation. In the convex mathematical programming literature, (A.13) are known as Kuhn–Tucker
conditions (see e.g. Luenberger, 1984).
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Frémond, M., 2002. Non-Smooth Thermomechanics. Springer-Verlag, Berlin.
Halphen, B., Nguyen, Q.S., 1975. Sur les matériaux standards généralisés. Journal de Mécanique 1, 39–63 (in French).
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