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Abstract

A simple way to define the flow rules of plasticity models is the assumption of generalized normality associated with
a suitable pseudo-potential function. This approach, however, is not usually employed to formulate endochronic theory
and non-linear kinematic (NLK) hardening rules as well as generalized plasticity models. In this paper, generalized nor-
mality is used to give a new formulation of these classes of models. As a result, a suited pseudo-potential is introduced
for endochronic models and a non-standard description of NLK hardening and generalized plasticity models is also
provided. This new formulation allows for an effective investigation of the relationships between these three classes
of plasticity models.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The models proposed so far in the literature to describe the rate independent inelastic behavior of real
materials subjected to monotonic or cyclic loading conditions can be essentially classified into two main
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families: (i) models where the present state depends on the present value of observable variables (total
strain, temperature) and of suitable internal variables; (ii) models, indicated here as hereditary, that require
the knowledge of the whole past history of observable variables.

The first group encompasses, for instance, the classical models of Prandtl-Reuss and Prager (see e.g.
Lemaitre and Chaboche, 1990) and the NLK hardening model of Armstrong and Frederick (1966), in its
original form as well as in the modified versions recently proposed by Chaboche (1991) and Ohno and
Wang (1993) in order to improve the ratchetting modelling. For these models, the well known notions of
elastic domain and loading (or yielding) surface apply. Associativity and non-associativity of the plastic
strain flow rule are also well-established concepts, as well as the assumption of generalized associativity
(or generalized normality), relating all internal variable flow directions to a given loading surface
(Halphen and Nguyen, 1975; Jirasek and Bazant, 2002). Using the language of convex analysis
(Rockafellar, 1969), generalized normality entails that the flows of all internal variables belong to the sub-
differential set of a given scalar non-negative function called pseudo-potential (Moreau, 1970; Frémond,
2002).

Among internal variable theories, generalized plasticity deserves special attention. A first important step
for its formulation was the idea, suggested by Eisenberg and Phillips (1971), of a plasticity model where,
despite classical plasticity, loading and yielding surfaces are not coincident. Then, starting from an axiom-
atic approach to describe inelastic behavior of materials, Lubliner proposed some simple generalized plas-
ticity models, able to represent some observed experimental behavior of metals (Lubliner, 1974, 1980, 1984;
Lubliner et al., 1993). More recently, generalized plasticity has been used for describing the shape memory
alloy behavior (Lubliner and Auricchio, 1996).

Endochronic models (Valanis, 1971) and Bouc-Wen type models (Bouc, 1971; Wen, 1976) are two impor-
tant examples of hereditary models. Endochronic theory has been developed during the seventies and used
for modelling the plastic behavior of metals (see, for instance, Valanis, 1971; Valanis and Wu, 1975) and the
inelastic behavior of concrete and soils (among others, Bazant and Krizek, 1976; Bazant and Bath, 1976).
The endochronic stress evolution rule depends on the so-called intrinsic time and is formulated by a con-
volution integral between the strain tensor and a scalar function of the intrinsic time called memory kernel.
When the kernel is an exponential function, an incremental form of endochronic flow rules exists, which is
commonly used in standard analyses and applications.

Models of Bouc-Wen type are widely employed for modelling the cyclic behavior of structures in seismic
engineering (Baber and Wen, 1981; Sivaselvan and Reinhorn, 2000) and for representing hysteresis of mag-
neto-rheological dampers in semi-active control applications (Sain et al., 1997; Jansen and Dyke, 2000).
The strict relationship between endochronic and Bouc-Wen type models has been mentioned several times
in the literature (see, among others, Karray and Bouc, 1989; Casciati, 1989). Recently, Erlicher and Point
(2004) showed that the fundamental element of this relationship is the choice of an appropriate intrinsic
time.

Endochronic theory and classical internal variable theory have been compared by using several ap-
proaches: Bazant (1978) observed that for endochronic theory the notion of loading surface can still be
introduced, but it looses its physical meaning; Valanis (1980) and Watanabe and Atluri (1986) proved that
a NLK hardening model can be derived from an endochronic model by imposing a special intrinsic time
definition. Moreover, a comparative study between NLK hardening and generalized plasticity models
has been presented by Auricchio and Taylor (1995). A tight relationship between endochronic theory
and generalized plasticity is also expected to exist, but, by the authors’ knowledge, no analysis on this sub-
ject has been done. More generally, there is a lack of unified theoretical framework, on which formal com-
parisons between these plasticity theories could be based. The main goal of this paper is the formulation of
this theoretical framework using the classical notion of generalized normality (Moreau, 1970; Halphen and
Nguyen, 1975). As a result, a new formulation of endochronic and NLK hardening models as well as gen-
eralized plasticity models is suggested and is used to investigate the relationships between them.
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The paper is organized as follows: in the first section, the standard theoretical framework of thermom-
echanics is briefly recalled, with reference to the notions of pseudo-potential and generalized normality as
well as Legendre—Fenchel transform and dual pseudo-potential. In the following sections, several plasticity
models are presented and are shown to fulfil the generalized normality assumption. The Prandtl-Reuss and
endochronic models are considered first, in both standard and multi-layer formulations. Then, NLK hard-
ening model and generalized plasticity follow. The discussion is limited to initially isotropic materials,
whose plastic behavior is governed by the second invariant of the deviatoric stress, J,, known as von Mises
or J, materials. No stability analysis is provided, as it is beyond the purposes of this contribution.

2. General thermodynamic framework

Under the assumption of infinitesimal transformations, the classical expression of the local form of the
first and second principle of thermodynamics can be written as follows:

Ts=—-¥ —sT —div(q) +r+o: & (1)
—adiv(dy -
<Ds(t)—s+d1V(T) T;O (2)

where the superposed dot indicates the time derivative; s is the entropy density per unit volume, q is the
vector of the flowing out heat flux, 7 is the absolute temperature, r is the rate of heat received by the unit
volume of the system from the exterior; & is the second order symmetric Cauchy stress tensor; ¢ is the tensor
of small total strains; @(¢) is the rate of interior entropy production. In the vector space of all second order
tensors, the Euclidean scalar product : is defined by x:y = x;;;;; the vector subspace of second order sym-
metric tensors is denoted by S°. The Helmholtz free energy density per unit volume is a state function de-
fined as

Y =YeT x5, - 1y) =P (3)
where g1,. .., xn, are the tensorial and/or scalar internal variables, related to the non-elastic evolution and
v={e,T,x1,--.,xn} is the vector containing all the state variables, namely the total strain tensor, the tem-

perature and the internal variables.
For isothermal conditions, the use of Eq. (1) in the inequality (2) leads to

®,(1):=Td(t) =Ts =0:6—¥ =0 (4)
which states that the intrinsic or mechanical dissipation ®,, (rate of energy per unit volume) must be non-
negative. The non-dissipative thermodynamic forces are defined as functions of the free energy density ¥
(see, among others, Frémond, 2002)
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The non-dissipative stress ¢"* is associated with the observable variable ¢, while ¢ are associated with
the internal variables y;. All non-dissipative forces can be collected in q" = (6", 7}%,...,7/¢). Hence, by

substituting (5) into (4), one obtains
N
1) =(6—0")é—Y 7' p=0i—q" V>0 (6)
=1

where v is the vector of the fluxes, belonging to a suitable vector space V. The vector spaces considered in
this paper are isomorph to R” and the same hold for their dual V* (see Appendix A). The symbol - indicates
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the scalar product of two objects having the same structure: two tensors, two scalar variables or two col-
lections of tensorial and/or scalar variables (the same notation has been used e.g. by Jirdsek and Bazant
(2002, p. 428)). The inequality (6) can be written in a slightly different manner, by introducing the dissipative
thermodynamic forces

¢ =1 . t]=le—0¢", -7 . .. T eV (7)
Hence,
N
Cu(t) =0 i+ 1l gy=q" V20 (8)
=1

The forces q have to be defined in such a way that the couple (q¢,v) always fulfils the inequality (8).
Therefore, some additional complementary rules have to be introduced. They can be defined by assuming
the existence of a non-negative, proper, convex and lower semi-continuous function ¢ : V — (—o0, o]
(Appendix A, item 2), called pseudo-potential, in general non-differentiable, such that ¢(0) =0 and:

q’ € 3p(V) %)
where 0 indicates the sub-differential operator (see Appendix, item 3). This condition is called generalized
normality. A more detailed way of writing (9) is

q’ € (V)i (10)
As a matter of fact, ¢ is a general function of the fluxes v and may also depend on the state variables v.
However, the subdifferential is taken, by definition, only with respect to the fluxes v and the thermody-
namic force q¢ corresponds to the subdifferential of ¢ at V' = v, where V is the actual flow. By using the prop-
erties of sub-differentials, it can be proved that for dissipative forces defined by (9), the inequality q* - v = 0
is always fulfilled (Appendix A, item 4). Therefore, the second principle (8) is also satisfied.
A dual pseudo-potential ¢* : V* — (—o0, 00| can be defined by the Legendre—Fenchel transform of ¢:
¢*(q”): = sup(q” - V' — (V) (11)
Vev
When ¢ has an additional dependence on the state variables v, then (11) leads to ¢* = ¢*(q?;v). It can be
proved that the dual pseudo-potential is a non-negative, proper, convex and lower semi-continuous func-
tion of q¢, such that ¢*(0) = 0 (see Appendix A, item 5). The dual normality condition reads

V0 (q) (12)
where ¢ is the actual value of the dissipative force. The expression (12) is equivalent to
vE 6(}’>*(q"/;v)\q4r:q,, (13)

and it guarantees that q* -v > 0 (Appendix A, item 5). Moreover, it defines the complementarity rules of
generalized standard materials (Halphen and Nguyen, 1975), sometimes called fully associated materials (Jir-
asek and Bazant, 2002, p. 452).

Plasticity is characterized by a rate-independent memory effect (Visintin, 1994, p. 13). This special behav-
ior occurs when the pseudo-potential ¢ is a positively homogeneous function of order 1 with respect to the
fluxes v'. In this case, provided that q“ is computed from (9) or that v derives from (12), it can be proved that
the pseudo-potential at v is equal to the intrinsic dissipation, viz. ¢(v) = q - v = ®,, (Appendix A, item 6).
Moreover, the dual pseudo-potential ¢* becomes the indicator function of a closed convex set E C V* and
the normality rule (12) entails that, given the dissipative force q? € E, the flux v fulfils the following condition:

Vq' €E (" —q?)-v<0 (14)
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viz. for a given dissipative force ¢, the flow v defined by (14) (or, equivalently, by (12) or (13)) is such that
its power when it is associated to the actual force q“ is always greater or equal to the power q° - v of all the
other dissipative forces q? € E (generalized maximum-dissipation principle (Halphen and Nguyen, 1975)).
When ¢/ € 9E, the inequality (14) indicates that v belongs to the cone orthogonal to OF at the point q“.
When ¢ € int(E), it forces the flow v to be zero (Appendix A, item 7).

3. Prandtl-Reuss model
3.1. Perfectly plastic Prandtl-Reuss model

In order to illustrate the general procedure that is adopted hereinafter, the basic example of the Prandtl—
Reuss model is considered first. The relevant state variables are the total and the plastic strain v = (g,&”) and
q"! = (6"",7"%) are the associated non-dissipative thermodynamic forces. The usual quadratic form of the
Helmbholtz free energy density ¥ is used, in order to preserve the linear dependence of all non-dissipative

forces with respect to state variables:

1
'Pzz(a—sp):C:(s—sp) (15)
For isotropic materials, the fourth-order tensor of the elastic moduli is equal to C=
(K —3G)1®1+ 2GI, where K is the (isothermal) bulk modulus, G is the shear modulus and ® is the
direct (or outer) product of two second order tensors. The assumption of isotropy is always adopted, even
if the concise symbol C is used. The non-dissipative forces associated with (15) can be derived by means of

(5):
6 =C:(e—¢), 1 =-C:(e—¢) (16)

The evolution of the dissipative forces q? = (6,7¢) € S? x S? := V" is defined by introducing a suitable
pseudo-potential ¢, which is a function of the fluxes vV = (¢,#) € S* x S? :=V (x is the cartesian
product):

/

. . 2 g
P(E,&) = \Aﬂyllﬁ" I+ 15(&, &)

D= {(é’,ép/) € V such that tr(&) = 0}

(17)

where tr(u) indicates the trace of the tensor u € S*. The norm of the second order symmetric tensor u is
given by |u|| = | /u;uw;. If in addition tr(u) = u; = 0, then lu|? = 2J5(u) where J5(u) is the second invariant
of the deviatoric part of u; o, is the one-dimensional tension stress limit and I is the indicator function of
the set D, namely Iz = 0if tr (¢” ) = 0 and I = +o0 elsewhere. This set is the effective domain of ¢ (Appen-
dix A, item 2). The pseudo-potential ¢ is a homogeneous function of order 1 with respect to (¢, é”/) and
therefore a rate-independent constitutive behavior is expected and the dissipation @,, is equal to
Péaﬂé””, where & is the actual plastic flow (Appendix A, item 6). The indicator function [7 accounts
or the fact that plastic deformation occurs without volume changes (plastic incompressibility). This
assumption is usual for metals and has been validated by experimental evidence.

The pseudo-potential ¢*, dual of ¢, can be computed using the Legendre-Fenchel transform (Appendix
A, item 5) and is equal to:

¢ (6’ 1") = sup (67 : & +17 & —¢) = Iz(67, 1) (18)

(# #)eD
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The dual pseudo-potential ¢* is the indicator function of a closed convex set E. Hence, ¢ = ¢** is the
support function of the same set (Appendix A, item 6). Moreover, since ¢ does not explicitly depend on
&, the dual pseudo-potential ¢* can be written as the sum of two indicator functions (Appendix A, item 7):

¢"(a”,7") = lo(a”) + le(e”)

/ ’ ) 2 19
E= {‘Ed € S% such that f(¢/) = ||dev(z?)|| — \/%ay < O} (19)

where dev(u) is the deviatoric part of u € S®. The first term entails the condition ¢? = 0, while the other
indicator function [; defines a region in the ¢ stress space. Recalling that the actual value of 1, viz. =%,
fulfils the condition ¥ = —7"? and that the only possible value for ¢ is zero, using (16) it is straightforward
to see that ¥ = 6 = ¢"? and that [ can also be interpreted as a set in the & stress space. The associated func-
tion f'is known as loading function and the condition f'= 0 defines the plastic states. The interior of E is asso-
ciated with the elastic states and the whole (closed) set E contains all plastically admissible states. The actual
flows (&,&”) can now be derived from (19) by computing the subdifferential set of ¢* and then considering it
at (6?,77) = (67, 7%). Hence, no restrictive conditions are imposed on &, while the plastic strain flow reads
(Appendix A, item 7)

. dev(z?) . O d 5 0 d

&= Hdev(rd)H)v_nA with 2 = 0, (%) <0, Af(z%) =0 (20)

Observe that f'in the loading—unloading conditions in the second row of (20) is computed at the actual

stress state. The plastic multiplier A is then evaluated by imposing the consistency condition, i.e. f = 0 (see
e.g. Simo and Hughes (1988)), with

f= {af :fd’] (21)

or?

Note that / is computed from the general expression of f(z¢) and then evaluated at the actual state
¢ = 1. Consistency corresponds to the requirement that in order to have A > 0, the actual dissipative force
¢ € OF cannot leave OF during the plastic flow. Hence, by using (20) and the relationship t = 6 = C:(e—¢"),

one has

. dev(t) . . :
f=———":dev(t*)=n:C:¢—n:C:n 1 22
fdev ()] 4 ) -
thus 4 = H(f) % =H(f)(n: &), where (x) = %‘x‘ (McCauley brackets) and H(f) is the Heaviside function,

equal to zero for f<0 and equal to 1 elsewhere.

In summary, the Prandtl-Reuss perfectly plastic model was formulated by means of the Helmholtz free
energy ¥ and the pseudo-potential ¢; then, the dual potential ¢* was computed from the Legendre—Fenchel
transform of ¢; the subdifferential set of ¢* was used to define the fluxes and the consistency assumption led
to the determination of the plastic multiplier A. In the next sections, this approach will be used to formulate
two Prandtl-Reuss models with isotropic hardening and other more complex plasticity models, such as
endochronic, NLK hardening and generalized plasticity models. In order to get this result, some non-stan-
dard expressions for the pseudo-potentials ¢ and ¢ are introduced.

3.2. Classical Prandtl-Reuss model with isotropic hardening
The vector of the representative state variables for a Prandtl-Reuss model with isotropic hardening is

equal to v=(s¢",{), while q"=(6"",6,R"") are the associated non-dissipative forces. Moreover,
v=(£#,0) eV =5 xS xR is the flux vector and ¢ = (6%,6?,R’) € V' =S’ x S’ x R contains all
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dissipative thermodynamic forces. The scalar internal variable ¢ and the associated forces R? and R" are
introduced in order to represent the isotropic hardening. The Helmholtz free energy is assumed to be of the
form

1
‘I’:E(s—s"):C:(a—s”)qLi(C) (23)
where &£({) is a scalar function such that £(0) =0 and %(0) = 0. It follows that
6" =C:(e—¢), 1=-C:(e—¢), R”d:j—f((:) (24)

The pseudo-potential is assumed of the following form:

o, &, 8) = ﬁoya + s, &,

D= {(é’,é”/,é,) € V such that tr(&') =0 and ¢ > ||| }

The first term in the expression of ¢ is the same as in the perfectly-plastic model when é/ is equal to the
norm of &. The second term, that is the indicator function I5, depends not only on tr (&), but also on the
flow {', which is forced be greater or equal than the norm of the plastic strain flow. This inequality guar-
antees that (" and ¢ are non-negative and entails that D is convex and closed (see Appendix A, item 1 and
Fig. la, which illustrates the projection of D on the (é"/, {)-plane for the tension-compression case). The
gi/ual pseudo-potential is different from (18), due to the presence of the dissipative force R? associated with

¢ (6’ v Ry = sup (¢ &+t & +R'Y —§) =1lo(¢”) + Ig(x! R (26)

@& )b

where E = {(t/,R?) € S* x R such that f(z*,R) < 0} and

S RT) = [dev ()] - <\/§ —Rf”) @)

é! R d
:_E_]DF Loading S!@L‘ \/73 Gy
7
(@) (b)

Fig. 1 Classical Prandtl-Reuss model. Tension-compression case. (a) Projection of the pseudo-potential effective domain D on the
(é‘”’@ )-plane. This set is indicated by D. (b) Domain E associated with the dual pseudo-potential ¢*.
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The loading function f defines a convex and closed region [ in the (rd/,Rd') space, where the actual value

of RY, viz. R = —R" = — dg—” governs isotropic hardening (or softening). The limit stress becomes greater
than its initial value \/ g, when d‘(s > 0 and less when < 0. Fig. 1b illustrates the set E. The flow rules
follow from the generalized normallty conditions:
dev(z?) . S S ;
=—)=n4, (=1 withi=0, /<0, if=0 (28)
[[dev (z9)]]

The flow of the internal variable { is equal to the plastic multiplier 4, which can be evaluated by imposing
the consistency condition:

. af .d af . d'
! or? ! OR? (v =2d R¥ —R9) >
It follows that
J— H(f)& _ HU)L?O (30)
n:C:n + d(z 1 + ZIG di

where H(f) and () still indicate the Heaviside function and McCauley brackets, respectively.
3.3. Modified Prandtl-Reuss model with isotropic hardening

The classical model of the previous section can be extended as follows. Assume the state variables
v=(g,&",{) and let the Helmholtz energy be equal to

‘P:%(a—s”): C:le—e) + Q) (31)

As a result, the non-dissipative forces are the same as in Eq. (24). Then, a generalized definition of the
pseudo-potential ¢ is adopted:

¢(é,7 ép/a él;é’) = <\/§O’yg(é) - dfj—(f)>€ +1 ( 7éﬁ/7 gl) (32)

D={(#,&,¢) eV such that tr(#) =0 and { > ||&|}
In this case, ¢ explicitly depends on the internal variable {, by means of =* d‘ ) and of the function g0,
positive and such that g(0) = 1. In the particular case where g({) = 1 +4 d—g \ﬂa , the classical expression

given in Eq. (25) is recovered. The dual pseudo-potential ¢* can be evaluated from the standard procedure,
thus yielding:

¢ (6”1  RY:0) = lo(6?) + Te(z*,RY;() (33)
where E = {(t/,R") € S* x R such that f(z*,R?;{) < 0} and
u U i’ 2 U
£, RY0) = Idev ()] - <\f§ayg(o e Rd) (34)

In Fig. 2, the projection of D on the (& Z/)—plane and the set E are depicted for the tension-compression
case, with the assumption &({) = 0. The flow rules are the same as in the previous case and they are reported
below for completeness:
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él rd
Actual loading \/2—/} o, g(‘;)

surface
V%o,

Iuitial loading
surface

1l
ﬁ

{
37 P
VHE,

(@) ()

Fig. 2. Modified Pran.(/itl—Reuss model. Tension-compression case with £({) =0. (a) Projection of the pseudo-potential effective
domain D on the (é”/, {')-plane. This set is indicated by D. (b) Different configurations of the domain E. The position of E changes
according to the value of the internal variable {. The point (t%,R%), representing the actual state, always lies on the axis R? = 0.

dev(z?) . R :
F=——"—"J)=nk (=41 withl>=0, <0, Af=0 (35)
[[dev (/)|
In this case, / has to be computed accounting for the state variables. Hence, consistency condition reads
. of ., Of .a Of; ]
= |—=:1t" + ,R += =0 36
/ i@rd OR? o¢ (x4 =2d &' =R9) (36)
and the plastic multiplier becomes equal to:
. (n:C: (n: &)
b= H() = H() (37
“Cn+\/0yd4 Ty/5% "
provided that 1 + \/ggg dﬁﬁ > 0. This condition does not prevent softening, which occurs when & g) <0.

The comparison of Egs. (27) and (34) proves to be very interesting. First, the usual loading function only
depends on the dissipative forces, while fin Eq. (34) is also related to the internal variable {. Moreover,

since RY = —R" = dg ) the loading function (34) at (1%, RY) becomes

S R0 = [[dev ()] - \@Gyg(l) (38)

This expression shows that the actual limit stress is equal to \/gayg(é’) and is independent from the func-
tion &({) introduced in the Helmholtz energy density (this is not the case for the classical Prandtl-Reuss
model).

The difference between the two Prandtl-Reuss models can be also explained in terms of mechanical dis-
sipation ®,,. For the modified Prandtl-Reuss model, it is equal to

which is non-negative provided that & L0 < \%ovg(é) The case of a mono-dimensional monotonic loading
is depicted in Fig. 3. The standard Prandtl Reuss model is characterized by the fact that the energy RC
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o VB EO 0,20
c, O,
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A Ter=vgL
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TZ =0y Tﬁ =0y,
_— 0,80
o, (o8
’ ’ d—%(@)
<=0 ©-1
FO= (g
RN Ten=vZL
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Fig. 3. Mechanical dissipation for the case of simple tension. The hatched area is the energy |®,,()dt dissipated during the monotonic
loading. (a) Classical Prandtl-Reuss model. (b) Modified Prandtl-Reuss model. (c) Modified Prandtl-Reuss model with
() = g—g () = 0. (d) Modified Prandtl-Reuss model with \/%gT (0) = a,(g({) — 1): the classical model is recovered.

associated to isotropic hardening is not dissipated. For this reason it is sometimes referred as energy blocked
in dislocations (Lemaitre and Chaboche, 1990, p. 402). Hence, the mechanical dissipation is equal to \/gayé

for any function &({). Conversely, for the modified Prandtl-Reuss model the amount of mechanical dissi-
pation depends, for a given function g({), on the choice of £({). Fig. 3b reports the case of generic functions
2(0) and &({). Fig. 3c and d correspond to &({) = 0 and to the case where the modified model is equal to the
classical one, respectively.

3.4. Multi-layer models of Prandtl-Reuss type

Modified Prandtl-Reuss models, defined by Egs. (31) and (32), can be directly extended to multi-layer
models (Besseling, 1958). They consist of a system of N elastoplastic elements connected in parallel. When
every individual elements are Prandtl-Reuss models, the corresponding multi-layer model is indicated as of
the Prandtl-Reuss type. This is the case in the present section. Hence, let

r=>v=3 [y c6-d e (40)
i=1 i=1

be the Helmholtz energy density, defined as the sum of N expressions of the type (31). The internal variable

¢ is the plastic strain of the generic element 7, while {; is the scalar variable associated with the isotropic

hardening of the same element. All elements have by definition the same elastic modulus tensor, chosen

to be equal to C =1 [(K —3G)1 ® 1+ 2GI]. The non-dissipative thermodynamic forces read:

o dé&i(()

N
:Zc;(s—sf), 7=-C:(e—¢), R‘= @ (41)
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Let us introduce the pseudo-potential ¢ as the sum of N independent functions of the type (32):

N o ul 2 d&(e)\ o .
¢ = Z JCENEOEDY K\@o—ﬂ-gi(c» ig“) G+ 05, (&4, C)

(42)

i=1

Di={(#,&,{) eV such that tr(') =0and {, > &' }

The limit stresses ¢,; as well as the isotropic hardening functions g,({;) are, in general distinct. The con-
jugated pseudo-potential is in turn the sum of N independent functions, i.e. ¢* = Zl 167 with

(" e R = sup (o i+l ¥ 4 RIG - ) =1o(e”) + 1 (xR (43)
@& 1)eD,
where E; = {(t/,R?) € S* x R such that f,(z¢,R?;{;) < 0} and
p A&
et R ) = ldew ()] - P00 + &7+ 4550 (#4)

Therefore, N independent loading surfaces have been defined. Using the standard procedure based on
the normality assumption, N pairs of flow rules of the type (35) can be derived:

. dev( ) ; . . . . . .
857 = = N;4;, é’i = )Ll' with ll = O, fi § 0, il_f, =0 (45)
[dev ()]
Moreover, by imposing the consistency conditions and accounting for Egs. (41) as well as the identities

¢ = —t" and RY = —R™, each plastic multiplier can be easily determined by an expression of the type (37):

<ll, :C: <ni . 8>
T ey dgl@) 46
:Com + \/ 0y o 204 dei(@) (46)

1+ 326G dg
: 20y dg; (G
provided that 1 + /55% d; > 0.

The Distributed Element Model (Iwan, 1966; Chiang and Beck, 1994) is recovered when g{{;) =1 and
<) =0

4. Endochronic theory

Endochronic theory was first formulated by Valanis (1971), who suggested the use of a positive scalar
variable 1, called intrinsic time, in the definition of constitutive laws of plasticity models. The evolution laws
are described by convolution integrals involving past values of the state variable ¢ and a suitable scalar
functions depending on ¢ called memory kernel. When the memory kernel is exponential, the integral
expressions can be rewritten as simple differential equations, which, for an initially isotropic endochronic
material fulfilling the plastic incompressibility assumption, read:

tr(6) = 3Ktr (8)
{ dev(6) = 2Gdev (&) — fdev (a)d (47)

with > 0. These relationships are equivalent to:

6=C:(¢—¢&),
C=(K—-3G)1®1+20I, (48)
tr(#) = 0 and & = 319 5

26/p
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where ¥ > 0 is the time-derivative of the intrinsic time. The simplest choice for the intrinsic time flow is
Hdev( )|| (Valanis, 1971). However, more complex definitions can be given, such as:

g(Lg = £ with { = ||dev (&)]| (49)

where ( is the intrinsic time scale and the positive function £;({) = 1/g({), such that f;(0) = 1, is sometimes
called hardening-softening function (Bazant and Bath, 1976).

4.1. A new formulation of endochronic models

In this section, the endochronic model defined by Egs. (48) is innovatively described by its Helmholtz
free energy and a suitable pseudo-potential associated with generalized normality conditions. This ap-
proach allows for insightful comparisons between endochronic models and Prandtl-Reuss models. The
main implications will be discussed later. Let v = (&, ", ) and q"¢ = (¢""%, 7%, R"?) be the assumed state vari-
ables and the associated non-dissipative thermodynamic forces, respectively. They are the same as in the
Prandtl-Reuss model with isotropic hardening. The Helmholtz free energy ¥ reads:

‘I’:%(s—.@fj):C:(s—#’) (50)

This form is a particular case of the one originally proposed by Valanis (1971), since only one tensorial
internal variable, the plastic strain, is considered here. The first two non-dissipative forces 6"/ and =" are
the same as in Eq. (24), while R™ = 0 since ¥ is assumed to be independent of the scalar variable (. The

pseudo-potential is defined as follows:

[dev]C ( ~ I

oE,¢ (e, 0) = {5, U er
#,#,0)eV such that (51)
D= .t Ly dev[C:(e—e)]y
tr(&)=0, &=—_—-——=0, (20
&) Fe()
The first term of ¢, in which the stress ¢”¢ y = C:(¢ — &) is written as a function of the state variables, is

equal to the intrinsic dissipation @,, when { assumes the actual value {. The first condition associated
with the closed convex set D introduces the plastic incompressibility assumption, while the second condi-
tion characterizes the plastic strain flow of endochronic theory, as it can be seen by comparing it to Egs.
(48) and (49). Finally, the positivity of C is imposed in order to guarantee that ¢ is positive. Using the
language of the endochronic theory, the internal variable { corresponds to the intrinsic time scale, while
the intrinsic time ¥ is defined by its flow ¢ = { /g({). The variable { does not directly appear in the Helm-
holtz free energy density and its associated thermodynamic forces, dissipative and non-dissipative, are
thus zero. However, ( is not zero during the plastic evolution and plays an important role in the definition
of &.
The conjugated pseudo-potential is, in this case, of the following form:

¢ (6”7 R 8,8, () = sup (6 &+ & + R — ) =1o(6”) + 1e(r! RV, 0) (52)
(&, PN )ED
where E = {(t?,R?) € S* x R such that f(z,R";¢,&",() < 0} and
dev(t?): dev[C: (e — )] ||dev[C : (e — &)]|°

2G50/ Ty A (53)

f(? R 8,68, () =
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Fig. 4. Endochronic model. Tension-compression case with g({) = 1. (a) Several configurations of the set D, which is the projection of
the pseudo potential effective domain D on the (s” { ) -plane. (b) Configurations of the convex set E associated with those of D. The
point (¢%,R%, representing the actual state, always lies on the axis RY = 0.

The expression (53) defines the loading function of endochronic models. 1t is associated with a set [E in the
(' ) space. In Fig. 4 this set 1s rt;presented in the case of tension-compression with g({) = 1, together
w1th the projection of D on the (s" {)-plane. This last set is indicated by D. Some important remarks have
to be made. First, as the system evolves, both sets change, due to their dependence on the internal variables.
At every instantaneous configurations, the set D is a straight line starting from the origin. The correspond-
ing sets [ are half-planes orthogonal to D. Moreover, Eq. (50) entails that " = —R? = 0 and, accounting
for the indicator function ly(¢?) in (52), it also leads to

=-1'=6=C:(e—¢) (54)

Therefore, at the actual stress state (z7, RY) the loading function f is always equal to zero. In other words,
(7, Rd) always belongs to OF, during both loading and unloading phases, and all the states are plastic states.
The normality conditions lead to the endochronic flow rules:

_ dev[C: (e fsp)]i
Ge(Q)/p

Egs. (52), (53) and (55) prove that endochronic models are associative in generalized sense. Moreover,
since f'is always equal to zero at the actual state, the loading—unloading conditions reduce to the require-
ment of the plastic multiplier / to be non-negative (see the inequality in (55)). In addition, the time deriv-
ative f at (1, Rd), computed accounting for the fact that falso depends on &, ¢” and {, is also equal to zero
and therefore, the consistency condition is automatically fulfilled and cannot be used to compute .

This situation is typical of endochronic theory and entails that the plastic multiplier A = { has to be de-
fined by an additional assumption. When the function g({) is also fixed, the plastic flow & and the intrinsic
time flow ¥ = <7 are then known. The standard choices are g({) =1 and J = { = |/dev (£)||. It has been
shown by Erlicher and Point (2004) that more complex definitions can be chosen, such as g({) =1 and

ﬁ_é_H®V@mV2O+;$gﬂ®ﬂﬂy®)Mw@ﬂwL —B<y<B, n>0 (56)

(=2 withl>0 (55)

which effectively lead to the Karray-Bouc-Casciati model (Karray and Bouc, 1989; Casciati, 1989). It must
be noticed that both flows & and { can be different from zero during unloading phases, i.e. when
dev(1?): & < 0. This situation, which is not possible in classical plasticity, occurs when 7 # f. Fig. 5a
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Fig. 5. Endochronic Karray—Bouc Casciati model (thin lines) vs. Prandtl-Reuss model (thick line). Tension-compression case with
g(0)=1and &) = 0. (a) Influence of the parameter n on loading branches. (b) Influence of the y/f ratio on unloading branches. The
slope at a1, =0 is the same for all y/B values.

illustrates for the mono-dimensional case the effect of n for given values of the other parameters: in the
limit of increasing n-values the Prandtl-Reuss model is retrieved. Fig. Sb shows unloading branches for dif-
ferent y/p ratios, the other parameters being fixed: plastic strains may occur and tend to zero when y/p tends
to 1.

4.2. Endochronic theory vs. Prandtl-Reuss model

Consider the endochronic model, as formulated in the previous section, and the modified Prandtl-Reuss
model. The significant state variables &, &’ and { are the same in both cases. Moreover, Egs. (31) and (50)
show that the Helmholtz free energies differ only by the term &({), which is zero in endochronic theory.
The main differences concern pseudo-potentials, as seen comparing Egs. (32) and (51) However, the strlct
relationship between the two models can be highlighted by imposing that C = ||s” | in (51): when C > 0,
the condition ||dev(C: (e — &))|| = 2¢g({) must be fulfilled, while for ¢ =0 there is no limitation on
dev(C:(e—&”)). As a result, the endochronic pseudo-potential (51) becomes equal to

~ ) 2G ./ )
o(&, ¢, 850) = S e +156.#,0) 57

D={@ & {)eV such thattr(®#)=0and{ =&}

_ The set D and the function (2) are not convex (see Fig. 6a). However, the Legendre—Fenchel conjugate of
¢ is still well-posed (Appendix A, item 5) and can be explicitly derived from the standard procedure:

¢ (6?27 RT;0) = sup (6”& +17 & + R'Y — ®) = lo(6”) + Ie(z? , R 30) (58)

(& & )GID

with E = {(¢/,R") € S* x R such that f(z*,R";{) < 0} and
U ! i’ 2G U
(@ RT0) = ||dev ()] — 7g(g) +R (59)

Provided that % = }/%ay, Egs. (58) and (59) also define the Legendre-Fenchel conjugate of the proper
convex lower semi-continuous function (Appendix A, item 5)

¢ =cl (conw?)) = \/%ayg(C)é/ + I]ﬁ(é’,é”’, C/)

D={(##.¢)eV such that tr(#) = 0 and { > || }

(60)
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Fig. 6. Endochronic model vs. Prandtl-Reuss model. Tension-compression case. (a) The set D is the projection of D on the (é‘”’, é/)-
plane, where D is the non-convex effective domain of the pseudo-potential ¢ of Eq. (57). It defines an endochronic model where the
intrinsic time flow { equals the norm of &. (b) The convex set E associated with the indicator function ¢* given in Eqs. (58) and (59),
which is the Legendre-Fenchel conjugated of (}5

which corresponds to the pseudo-potential of a modified Prandtl-Reuss model, in the case &({) = d—g =0
(see Eqgs. (32)).

A similar comparison between the classical Prandtl-Reuss model (Egs. (23) and (25)) and endochronic
models is possible as well, but only when the former is perfectly plastic, i.e. if £({) =0, and conditions
£(0)=0 and g =1 hold in the latters. Note that these assumptions have been adopted in Fig. 5.

4.3. Multi-layer models of endochronic type

The concept of assembling in parallel several plastic elements can be applied to the case in which each
element is of endochronic type. The approach is analogous to the one adopted in Section 3.4. Let ¢ and
(&7, ;) be the relevant state variables. Then, the Helmholtz energy is defined as the sum of N contributions,
of the same kind as in Eq. (50):

wzzaﬂizg[%(s—ef):c:(s—sf) (61)

where the internal variables ¢ have the meaning of plastic strain of the i-th endochronic element. The ther-
modynamic forces associated with {; are zero, viz. Rfd = 0. Moreover, N independent pseudo-potentials are
assumed to be of the type (51):

|ldev[C: (= &)
2Gg(4)/B;
(#,&,8) eV such that (62)

D= ' 4 / (e —&)] o
tr(&) =0, C,—?Oandéflf’z%wg

with f,> 0, g({;) > 0 and g{0) = 1. The pseudo-potential of the multi-layer model is ¢ = Efv: \¢; and its
dual is ¢* = SV 47, with

qu C: + ”ﬁi(élaéygla ';;svsfa Cl)
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o;= sup (" ¥ ol ¥ 4RI - b) = ho(e”) + 15 (] R e8], L) (63)
@& D)eD,
where [, = {(¢/,R’) € S* x R such that f,(z%,R? ;e, ", ;) < 0} and
dev (x): dev[C: (s— )]  [ldev[C : (s — )]
2Gg(L) /B 2G (L) /B
The flow rules then become of the form (55). Moreover, it can be easily proved that at the actual state
represented by (¢¢,R?), the identities f; = f = 0 hold and, for this reason, the fluxes {; = 4; > 0 cannot be
computed from the consistency conditions and have to be defined using a further assumption.
If the number of elements is N =2, g; = g> = | and both ﬂuxes C1 and Cz are of the form (56), then the

model of Casciati (1989) is retrieved. Moreover, the condition C = ||&’|| into (62) leads to a multi-layer
model of Prandtl-Reuss type (see Section 4.2).

fi= +RY (64)

5. Non-linear kinematic hardening models

The NLK hardening rule was first suggested by Armstrong and Frederick (1966), who introduced a
dynamic recovery term in the classical Prager’s linear kinematic hardening rule. Several modifications of
this basic rule have been proposed, in order to improve the description of the cyclic behavior of met-
als, particularly for the ratchetting phenomenon (see, among others, Chaboche, 1991; Ohno and Wang,
1993).

According to traditional formulation, NLK hardening models do not fulfil the assumption of generalized
normality (Lemaitre and Chaboche, 1990, pp. 219-221; Chaboche et al., 1995). Following an approach
based on the notion of bipotential, De Saxcé (1992) introduced implicit standard materials and showed that
the plasticity models with NLK hardening rules are of such type.

In this section, another formulation is suggested, which leads to the proof that NLK hardening models
belong to the class of generalized standard materials, provided that a suitable, non-conventional, loading
function is defined. First, the state variables v = (g,&",{, 8,{;) have to be introduced. The first three are the
same as for Prandtl-Reuss and endochronic models, while f and {; are related to NLK hardening rule. The
role of the scalar variable {; will be discussed later on. The corresponding thermodynamic forces are
q = (6", 7 R X" R™) and ¢’ = (¢?,7¢,R?,X?,RY) € V*. The Helmholtz energy density is chosen as
follows:

‘P:%(s—ap):C:(a—sp)+%(ap—ﬂ):D:(sp—ﬁ) (65)

The quantity « = &’ — B is usually adopted as the internal variable associated with the kinematic hard-
ening. However, the choice of B as a representative internal variable appears more suited, because it
highlights the formal analogy between the first quadratic term in Eq. (65), typical of plasticity models,
and the second one, associated with the kinematic hardening. The isotropy assumption leads to the usual
expression for C and entails that D = D;1®1 + D,I. The non-dissipative forces can then be readily
evaluated:

6" =C:(¢—¢)
7 =—C:(e—&)+D:(&—p), R'=0 (66)
X"=-D: (s~ ), R'=0

The three tensorial non-dissipative forces are related by the identity "¢ = —¢"? — X"?. Moreover, let the
pseudo-potential be equal to
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2 . D: Y2 2./ Y AN ARy
d) — \/;Jyg(g)c + || DZ(S ﬂ)” Cl + Hﬁ(é,,ép,cvﬂacl;& £p7§7 ﬂacl)

7&((1)
(57%”’,5,ﬁl,51) €V such that
w@)=0, =&, (67)
ﬁ: o P D: (8 —ﬂ) !
w(f)=0, p="—"1520,
e ’ 5&((1) 1

C/l :h(8a8p7é’7ﬂﬁcl) /

with &, g({), g1({;) > 0 and g(0) = g,(0) = 1. Fig. 7 shows two projections of the effective domain D for the
tension-compression case. The first term in the definition of ¢ is identical to that of Eq. (32) for a modified
Prandtl-Reuss model with &({) = 0. The second term is related to the NLK hardening and it is formally
identical to the one used in the definition of endochronic models (see Eq. (51)), with the substitutions de-
v(g) — &, & — P and { — {;. The same analogy applies to the conditions defining the set D.

The dual pseudo-potential then becomes

d)* ,S,uP/ (O'd,Zé/‘f"td,Zépl—f—Rd/é/—FXd,:B,+R‘f,é/1—(l’))
(& .08 .01)eD
- UO(O'd/) + U[E(Td’;Rd/axd/7Rtll,;sv 8}77 é/aﬁa Cl) (68)

where E = {(t*,R",X? ,R?) € S* x R x S* x R such that f < 0} and
’ X7 [D: — D: -BI° ,
=WW<m—¢}mo+M+( DBl B2 m“+M>@f$&a)%%

Dyg,(£1)/0 Dyg(81)/é

Eq. (69) defines the loading function of a model with NLK hardening and the associated set [ is depicted
in Fig. 8 for the tension-compression case when g({) = 1. The normality condition associated with ¢* leads
to the following flow rules:

dev (77)

¥ = ti=ni, (=)
l!dezz( )%) ni, ¢
T = e ' (70)
= Dag, (/6" .0 8,0)h L= he e, (B0

with 2 >0, £ <0, if =0

é.' Initial C;

(@ ()

Fig. 7. NLK h/arg/lening model. Tension-compression case. (a) Projection of the effective domain D on the (ép', é/)-plane. (b) Projection
of D on the (B,¢,)-plane.
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Fig. 8 NLK hardening model. Tension-compression case with g({)=1. (a) Condition /<0 when R‘l"/ =R!=0 and
X =X?=D: (¢ — B). (b) Condition £ < 0 when R’ = R = 0 and ||dev ()| = ||dev (¢)|| = \/_%ay.

The thermodynamic force X¢ = —X" = D:(¢” — B) is traceless, due to the assumptions adopted for the
traces of & and f. Special attention must be paid to the relationship between the fluxes ¢, and {. The time
derivative of {; is defined as the product between { and the function /, which depends on the state variables
and must be non-negative and finite, but is otherwise free. The variable {; can be interpreted as an intrinsic
time scale for the NLK hardening flow rule.

Accounting for the identities ("¢, R™, X" R") = —(z¢, R, X?,RY) and Egs. (66), one can prove that
RY=0 and that the term proportional to / in Eq. (69) is always zero at the actual state. Hence, only the
first two terms in the expression of f affect the consistency condition / = 0, which leads to the plastic
multiplier

i = H(fp) UL (1)

x X 20y dg(0)
L+ 2 =56 ash(e . LBL) + /356 5

The positive functions g, g; and /& determine the actual model.
The choice g = g, = & = 1 corresponds to the basic NLK hardening model of Armstrong and Frederick
(1966). Another interesting case is given by g =g; =1 and

L (M)ml<kl;n> ifD: (22— ) #0

D, /6 (72)
h=0 ifD:(&—-p)=0
where m; > 0 and k; = ﬁ is the unit vector having the same direction as X’ = D : (¢’ — ). These con-
ditions lead to
. X x| X’
= k &) =8 —— 73
R NE R NP <D2/5> Wi =8, 7

which is the NLK hardening rule proposed by (Ohno and Wang, 1993) for modelling the ratchetting phe-
nomenon in metal plasticity. It is interesting to compare the quantity

L=hl= (%) (k; : &) (74)
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and the intrinsic time flow J, defined in Eq. (56) for endochronic models of the Bouc-Wen type. Two sig-
nificant differences can be observed: (i) the governing flow variable is the plastic strain for NLK hardening
rule and the total strain for the flow rule of the endochronic model; (ii) due to presence of the absolute value
instead of the McCauley brackets, the endochronic model of Bouc-Wen type introduces non-zero flows
during unloading phases when y # f.

5.1. From an endochronic model to a NLK hardening model

Valanis (1980) and Watanabe and Atluri (1986) proved that a NLK hardening model can be derived
from the endochronic theory by adopting a special intrinsic-time definition, namely when the intrinsic time
scale flow ( is forced to be equal to the norm of the plastic strain flow. The approach suggested in this paper
not only confirms this result, but allows for a generalization, due to the presence of a second intrinsic time
scale {1, in general distinct from {. Consider the differential equations defining an endochronic model with a
kinematic hardening variable X:

tr(6) = 3Ktr (&)
dev (6) = 2Gdev (&) — pdev (6 — X%) %

2(0)
tr( )—o (75)
X’ = D,i? — oX9 b

a1(&1)
é’l - h(s,s agﬁa Cl)g

The idea of a kinematic hardening variable in an endochronic model was first suggested by Bazant
(1978), who however considered a linear evolution of X? as function of the plastic strain. An alternative
way to describe the model defined by (75) is

c=C:(e—¢) X'=D: (- p)
C=(K-2G)1®1+2GI D=D1®1+ Dl
. ., dev(e —X9), . . ), G (76)
tr(é) =0, # = —5———=( tr(f)=0,
T %g(é’) ¢ wlh) b= 5g1(C1)C

é] = h(b‘, sp’ Ca ﬁ7 Cl)g
Moreover, both Egs. (75) and (76) can be derived from (65) and the following pseudo-potential:

[dev[C:(6—a)—D: (@~ Bl v ID: @ =By o v o
b= + L4158, 0B, e e, [ B.C
2/_}Gg(é’) %g1(€1) 1 D( 1 1)
AT / / (e—¢&)—-D: (& — gy
@, §,8) eV such that (i) =0, & =V ;Z)(C)D @=Ply ¢
= 58
D: B
o\ .,_D.(p l;) ~/_ o
tr(f)=0, B _ﬁé«/]v {=hee (B,L) =0
1
(77)
Let{ = ||| be the chosen intrinsic time definition and assume 2% \/a} Then, introducing these con-

dltlons in (77), one obtains a pseudo-potential ¢ which differs from the one of Eq. (67) only in the inequality
c_“, > ||s‘" || which is an equality in ¢. This difference affects neither the expression of the dual pseudo-po-
tential qﬁ = ¢" (Appendix A, item 6) nor the flow rules, which are in both cases equal to Egs. (68)—(69)
and Eq. (70), respectively. Moreover, in the particular case 7 =1 and g({) = g;1({), the results discussed
by Valanis (1980) and Watanabe and Atluri (1986) are retrieved.
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6. Generalized plasticity models

Generalized plasticity models (Lubliner et al., 1993) are considered an effective alternative to NLK hard-
ening models, since they behave similarly and are computationally less expensive (Auricchio and Taylor,
1995). A new description of these models is suggested here, supported by a suitable pseudo-potential
and the generalized normality assumption. In order to expose the basic principles of this new approach,
only the simple generalized plasticity model presented by Auricchio and Taylor (1995) is considered. The
extension to more complex cases is straightforward.

First, the state variables v = (g, &, {) have to be introduced. The corresponding thermodynamic forces are
q"? = (6",7", R") and q" = (67,77 R“). The Helmholtz energy density is chosen as follows:

1 1
'I’zi(s—s”):C:(s—&”)—l—is”:D:s” (78)
The expression for C and D are the same as in NLK hardening models. The non-dissipative forces can be
readily evaluated:
6" =C:(e—¢), 7"=-C:(e—¢&)+D:¢", R“=0 (79)

Note that 6"/ and 7" are related by the identity "¢ = —(¢”"? — D:&”), where the backstress D:&” introduces

a linear kinematic hardening effect. Moreover, let the pseudo-potential be equal to

o, & L e, 0) = g(e, ¢, O +15(&, &)

= . , Y , (80)
D={(&&,) eV such that tr(¢) =0 and { > ||&]| }
where
5 . -
0.0 = { V1o + ik el
[devC:(e—¢&)—D:e]|| if f =0 (81)

f(e.&,0):=|dev[C: (e —&") =D : &][| — (\/%fnyrHisoi)

with His, > 0. The main characteristic of this pseudo-potential function is given by the piecewise expression
introduced to define the positive function g. It is assumed that g depends on the sign of the function f,
which in turn is related to the state variables. The conjugated pseudo-potential ¢* reads

¢ (6", v R 6,e,0) = sup (67 :& +17 ¥ +RY — §) = 1y(0”) + 1e(!, R 36,8, () (82)
@& )b
where E = {(t?,R?) € S* x R such that f(z¢,R";¢,&",() < 0} and
. dev ()| = (+/%0, + His, R if <0
e R ) — 4 19V E (20 + Hisol) + if 7 )

[dev ()| — ||dev[C: (e —&") =D : ]| +R? if f >0
The loading function f also has a twofold definition: recalling that the actual thermodynamic force ¢
fulfils the following identities
“=C:(e—¢&)-D:&#=6-D:¢ (84)
and R’=—R" =0, one can prove that if f(s ¢, () <0 then f(t?,R%g, ¢, () = f(e ¢,(); moreover, if

f(e,e",{) = 0, then f(‘cd, R%:¢ &, {) is always zero, viz. the actual state represented by (‘L'd, Rd) remains in
contact with the loading surface OF. In Fig. 9, this situation is depicted for the tension-compression case.
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Fig. 9. Generalized plasticity. Tension-compression case. (a) Projection of the pseudo-potential effective domain D on the (é”’, é/)-
plane. This set is indicated by D. (b) Several configurations of the domain E. When f > 0, E translates upward during loading phases
and downward during unloading phases. The point (z%,R%), representing the actual state, always lies on the axis R¢ = 0.

The normality conditions associated with the loading function f read:
dev (Td) . . . . . . .
F=——"-"J=n) (=1 withlf =0, /<0, =0 (85)
[[dev (z7)]]

These flow rules are identical to those of a Prandtl-Reuss model (see Eqs. (35)). However, they derive
from a different loading function and for this reason the computation of the plastic multiplier 4 is not
the same. When f(77,R%;¢,¢", () = f(&,¢",() < 0, the loading-unloading conditions reduce to 2 = 0, leading
to an elastic behavior. As a result, the function f is also called yielding function, while the surface defined by
the condition f = 0 is called yielding surface. Conversely, when f > 0 the set E evolves by virtue of the
dependence of f on the state variables ¢, ¢ and {. During this evolution, the actual thermodynamic forces
(7, R‘l) always satisfy the condition f'= 0. Moreover, the consistency condition

: of .o Of .« Of . 0of . Of;
= S - R - —: & v =0 86
s ol " * oR? " %" * Og? - O0 ™ | (zr —qt g ety (80)
is also identically fulfilled and, like for the endochronic theory, it does not permit to compute J. > 0. Hence,
the condition that the so-called limit function is equal to zero has to be invoked and this leads to (Auricchio
and Taylor, 1995):

0 it 7<0
s (n:é&) ) - =
SRR O 7 27 7 A 7
267

where M, N > 0. It can be proved that when f tends to M, the expression of the plastic multiplier of a clas-
sical plasticity model with linear kinematic and isotropic hardening is retrieved. Moreover, if Hi;, =0 an
asymptotic value of ||z7| exists, and is equal to \éay +M.

7. Conclusions

A common theoretical framework between Prandtl-Reuss models and endochronic theory as well as
NLK hardening and generalized plasticity models was constructed. All models were defined assuming
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generalized normality. It was therefore proved that a unique mathematical structure, based on the notions
of pseudo-potential and generalized normality, was able to contain plasticity models traditionally formu-
lated by other approaches. In particular, no extension of the generalized standard class of materials had
to be introduced to describe NLK hardening and generalized plasticity models. This approach allowed sev-
eral comparisons, that have clarified the relationships and analogies between these, a priori different, plas-
ticity theories.

Appendix A

The vector spaces considered in this paper are: (i) the space of second order tensors; (ii) the space of sym-
metric second order tensors S?; (iii) the set of real scalars R = (—o0, 400); (iv) the cartesian product of a
finite number of such spaces. They are all equipped with an Euclidian product, so they are always isomorph
to the Euclidian vector space X = R".

(1) A subset C of X is said to be:
(a) a convex set if (1 — 1)x + Ay € C whenever x,y € C and 0 <1< 1.
(b) a cone if oy € C wheny € C and 2> 0.

(2) Let ¢ : X — (—o00, 00] be an extended-real-valued function defined on the vector space X. Then,
(a) the epigraph of ¢ is the set

epido = {(y,u) such that y e X,u € Ryu = o(y)} (A.1)

(b) ¢ is said to be convex on X if epi ¢ is convex as a subset of X x R.
(c) a convex function ¢ is said to be proper if and only if the set

D= {yeX:¢(y) < +oo} (A.2)

is not empty. The set D is called effective domain of ¢, it is convex since ¢ is convex and is the set
where ¢ is finite.
(d) ¢ is said to be continuous relative to a set D if the restriction of ¢ to D is a continuous function.
(e) ¢ is lower semicontinuous at x € X if

$(x) = lim inf ¢(y) (A3)

It can be proved that the condition of lower semi-continuity of ¢ is equivalent to have that the
level set {y:¢p(y) < o} is closed in X for every a € R (Rockafellar, 1969, p. 51). As a result, when
¢ is a proper convex function with a (convex) effective domain D closed in X and ¢ is continuous
relative to D, then ¢ is lower-semicontinuous (Rockafellar, 1969, p. 52).
(3) Let X* be the dual of X. Since X = R”, then X** = X and the duality product between x and x*, ele-

ments of the dual vector spaces X and X", can be written as x" - x.

Let ¢ : X — (—00, 00] be an extended-real-valued convex function. Then, the subgradients of ¢ at x € X

are elements x* € X" such that

WweX, ¢y)—okx) =x"-(y—x) (A4)
The subdifferential set Op(x) is the set of all subgradients x* at x:
0¢(x) = {x" € X" such that the condition (A.4) holds} (A.5)

The function ¢ is said to be subdifferentiable at x when 0¢(X) is non-empty.
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(4) If a function ¢ : X — (—o00, 00] is convex, proper, non-negative and such that ¢(0) = 0, then the nor-
mality condition

X" € 0 (x) (A.6)

viz. x* belongs to the subdifferential set of ¢ at x, entails that x* - x > 0.

Proof. Setting y=0 in the inequality (A.4) entails that, for any x in the effective domain of ¢,
—¢(x) = x" - (0 — x). Hence, by virtue of the non-negativity of ¢, x* - x > 0.

(5) When a function ¢ : X — (—o00, 0] is proper, convex and lower semi-continuous, the dual function
¢ : X" — (—00,00], defined by the Legendre—Fenchel transform

WEXT  ¢(y) =sup(y -y — ¢(y) (A7)
ye

is related to ¢ by a one-to-one correspondence, in the sense that for such a kind of functions, the

conjugate ¢~ is in turn proper, convex and lower semi-continuous and ¢** = ¢ (Rockafellar, 1969,

p- 104). Under these assumptions, it also holds:

vy e X' ¢'(y") =sup(y -y — ¢(y)) (A.8)
yeD
Moreover, the following relationships are equivalent:
(i) x*€0h(x)
(i) x€0¢™*(x")
(iil) P(x) + ¢"(x*) =x* - x (A9)

Condition (i) is equivalent to x* - x—¢(x) = X" -y — ¢(y). The supremum of the second term of this
inequality is equal by definition to ¢*(x*) and occurs when y = x and therefore (iii) is the same as
(i). Dually, (ii) and (iii) are equivalent.

Remark 1. Under the previous assumptions, if ¢
Moreover, the identity ¢ = ¢ implies that ¢(0

> 0 and ¢(0) =0, then (A.7) entails that ¢"(0) =0.
) =
Reciprocally, ¢* = 0 and ¢*(0) = 0 entail that ¢ = 0

SUpPy.ex- (—#"(y*)), which in turn leads to ¢* > 0.
and ¢(0) =0.

Remark 2. If ¢" is such that ¢* > 0 and ¢"(0) = 0, then the normality condition (ii) implies that x* - x > 0.
Proof. Condition (ii) is equivalent to (i), with ¢ > 0 and ¢(0) = 0. Then, using the result of item 4, the non-

negativity of x” - x follows.

Remark 3. :flle conjugate 55* of an arbitrary function ¢ : X — (=00, 00] can still be defined by (A.7). In
this case, ¢ is proper, convex, lower semi-continuous and is equal to the conjugated ¢ of

¢ = cl(conv ¢), where ¢ is the greatest proper convex lower semi-continuous function majorized by ¢
(Rockafellar, 1969, pp. 52, 103-104).

(6) A function ¢ : X — (—00,00] is positively homogeneous of order 1 if and only if
vy € X, Vp € (0,00), ¢(py) = po(y) (A.10)

The epigraph of such functions is a cone (Rockafellar, 1969, p. 30).
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Given ¢ : X — (—o0, o], the following three statements are equivalent:

(i) ¢ is proper, convex, lower semi-continuous and positively homogeneous of order 1.
(ii) The Legendre-Fenchel conjugate ¢* of ¢ is the indicator function of a non-empty, convex and closed
set E, i.e.

e X 0 ify" ek
¢ (y) =) = ) _
+oo ify ek

(iii) ¢ is the support function of a non-empty, convex and closed set [, i.e.

B(y) = Iz(y) = sup(y” - y)

y ek

The equivalence between (i) and (ii) can be proved by showing that ¢* has no values other than 0 and
“+oo (Rockafellar, 1969, p. 114). The set where ¢* = 0 is non-empty, convex and closed since ¢ is proper,
convex and lower semi-continuous. The equivalence between (ii) and (iii) follows from the definition of
Legendre—Fenchel transform, support functions and indicator functions.

Remark. If ¢ fulfils conditions in (i), then for any x where ¢ is subdifferentiable,
o(x) = ¢ (x) =x*-x with x* € 0¢(x)

Proof. From the equivalence between (i) and (ii), the conjugated of ¢ is the indicator function of a closed
convex set | and x* € E since ¢ is subdifferentiable at x by assumption. Then, use Eq. (A.9) and recall by
(ii) that ¢*(x*) = 0.

(7) Let ¢ : X — (—o00,+00] be a proper, convex, lower semi-continuous function, positively homoge-
neous of order 1. Then:

(i) From item (6), its conjugate ¢* is the indicator function of a non-empty, closed and convex set E.
Hence, by using the definition (A.4),

0 if x* € int(E)
o (x") = dlz(x*) = { F(x*) if x* € OF (A.11)
@ ifx ¢E

where €(x*) = {x e X :Vy* € E x-(y* — x*) < 0} is the so-called normal cone at x* € OF.
(ii) If in addition ¢ does not depend on some components y; of y = (y;,y2) C X =X; x Xy, ie.
o(y) = ¢(y,,¥,) = ¢(¥,), then the conjugated function ¢* can be computed as follows:

& (¥, ¥2) = sup (Y7 ¥ +¥ Y2 — ¢(¥2) = lo(y]) + sup (¥ - ¥2 — d(¥2)) = lo(y}) + le(y3)

(y1.y2)€X ¥26X

(A.12)

The Legendre-Fenchel conjugate is the indicator function of 0 with respect to yj plus the Legendre—
Fenchel conjugate of ¢(x;), which is the indicator function of a non-empty, closed and convex set E.
Hence,

x € 0lz(x") <= x; € X, and x, € 0lg(x3)
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In the particular case where E = {y* € X" such that f(y*) < 0}, where fis a convex and smooth func-
tion, the normality condition at y* = x”, viz. x € dlg(x*), can be written as follows

u=0 for f(x*) <0

= d f(x* ith
x = p grad f(x*) wi {#20 for f(x*) = 0

These two last conditions are often replaced by
H=0, fx)<0, wf(x)=0 (A.13)

which are the classical loading—unloading conditions of plasticity, usually written with u replaced by
the plastic multiplier 7. The dependence of f on the argument x* is often omitted in order to simplify
the notation. In the convex mathematical programming literature, (A.13) are known as Kuhn-Tucker
conditions (see e.g. Luenberger, 1984).
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